Global guidance-based integration network for salient object detection in low-light images

被引:7
作者
Zhang, Zenan [1 ]
Guo, Jichang [1 ]
Yue, Huihui [1 ]
Wang, Yudong [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-light images; Salient object detection; Global information flow; Multi-level features cross integration; U-shaped attention refinement; MULTISCALE;
D O I
10.1016/j.jvcir.2023.103862
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most of current salient object detection (SOD) methods focus on well-lit scenes, and their performance drops when generalized into low-light scenes due to limitations such as blurred boundaries and low contrast. To solve this problem, we propose a global guidance-based integration network (G2INet) customized for low -light SOD. First, we propose a Global Information Flow (GIF) to extract comprehensive global information, for guiding the fusion of multi-level features. To facilitate information integration, we design a Multi-level features Cross Integration (MCI) module, which progressively fuses low-level details, high-level semantics, and global information by interweaving. Furthermore, a U-shaped Attention Refinement (UAR) module is proposed to further refine edges and details for accurate saliency predictions. In terms of five metrics, extensive experimental results demonstrate that our method outperforms the existing twelve state-of-the-art models.
引用
收藏
页数:10
相关论文
共 47 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]   Depth-Quality-Aware Salient Object Detection [J].
Chen, Chenglizhao ;
Wei, Jipeng ;
Peng, Chong ;
Qin, Hong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :2350-2363
[3]   Improved Saliency Detection in RGB-D Images Using Two-Phase Depth Estimation and Selective Deep Fusion [J].
Chen, Chenglizhao ;
Wei, Jipeng ;
Peng, Chong ;
Zhang, Weizhong ;
Qin, Hong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :4296-4307
[4]  
Chen T., 2022, IEEE Trans. Multimed.
[5]   Global Contrast Based Salient Region Detection [J].
Cheng, Ming-Ming ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Torr, Philip H. S. ;
Hu, Shi-Min .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) :569-582
[6]   Video Saliency Detection via Sparsity-Based Reconstruction and Propagation [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Porikli, Fatih ;
Huang, Qingming ;
Hou, Chunping .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) :4819-4831
[7]  
Deng ZJ, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P684
[8]  
Fan DP, 2018, Arxiv, DOI arXiv:1805.10421
[9]   Structure-measure: A New Way to Evaluate Foreground Maps [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Yun ;
Li, Tao ;
Borji, Ali .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4558-4567
[10]   Shifting More Attention to Video Salient Object Detection [J].
Fan, Deng-Ping ;
Wang, Wenguan ;
Cheng, Ming-Ming ;
Shen, Jianbing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8546-8556