Open Covers and Lex Points of Hilbert Schemes Over Quotient Rings via Relative Marked Bases
被引:0
作者:
Bertone, Cristina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Bertone, Cristina
[1
]
Cioffi, Francesca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dip Matemat & Appl, Naples, ItalyUniv Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Cioffi, Francesca
[2
]
Orth, Matthias
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kassel, Inst Math, Kassel, GermanyUniv Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Orth, Matthias
[3
]
Seiler, Werner M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kassel, Inst Math, Kassel, GermanyUniv Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Seiler, Werner M.
[3
]
机构:
[1] Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Napoli Federico II, Dip Matemat & Appl, Naples, Italy
We introduce the notion of a relative marked basis over quasi-stable ideals, together with constructive methods and a functorial interpretation, developing computational methods for the study of Hilbert schemes over quotients of polynomial rings. Then we focus on two applications. The first has a theoretical flavor and produces an explicit open cover of the Hilbert scheme when the quotient ring is Cohen-Macaulay on quasi-stable ideals. Together with relative marked bases, we use suitable general changes of variables which preserve the structure of the quasi-stable ideal, against the expectations. The second application has a computational flavor. When the quotient rings are Macaulay-Lex on quasi-stable ideals, we investigate the lex-point of the Hilbert schemes and find examples of both smooth and singular lex-points.
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz, Via Cintia,Complesso Monte S Angelo 26, I-80126 Naples, ItalyUniv Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Cioffi, Francesca
Roggero, Margherita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
机构:
Univ Genoa, Dipartimento Matemat, I-16146 Genoa, ItalyUniv Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
Mora, Teo
Roggero, Margherita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz, Via Cintia,Complesso Monte S Angelo 26, I-80126 Naples, ItalyUniv Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Cioffi, Francesca
Roggero, Margherita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Turin, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
机构:
Univ Genoa, Dipartimento Matemat, I-16146 Genoa, ItalyUniv Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
Mora, Teo
Roggero, Margherita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy