Model optimization techniques in personalized federated learning: A survey

被引:10
|
作者
Sabah, Fahad [1 ,2 ]
Chen, Yuwen [1 ]
Yang, Zhen [1 ]
Azam, Muhammad [2 ]
Ahmad, Nadeem [2 ]
Sarwar, Raheem [3 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
[2] Super Univ, Fac CS&IT, Lahore, Pakistan
[3] Manchester Metropolitan Univ, Fac Business & Law, OTEHM, Manchester, England
基金
中国国家自然科学基金;
关键词
Personalized federated learning; Model optimization; Distributed machine learning; Collaborative learning; Privacy-preserving;
D O I
10.1016/j.eswa.2023.122874
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Personalized federated learning (PFL) is an exciting approach that allows machine learning (ML) models to be trained on diverse and decentralized sources of data, while maintaining client privacy and autonomy. However, PFL faces several challenges that can deteriorate the performance and effectiveness of the learning process. These challenges include data heterogeneity, communication overhead, model privacy, model drift, client heterogeneity, label noise and imbalance, federated optimization challenges, and client participation and engagement. To address these challenges, researchers are exploring innovative techniques and algorithms that can enable efficient and effective PFL. These techniques include several optimization algorithms. This research survey provides an overview of the challenges and motivations related to the model optimization strategies for PFL, as well as the state-of-the-art (SOTA) methods and algorithms which seek to provide solutions of these challenges. Overall, this survey can be a valuable resource for researchers who are interested in the emerging field of PFL as well as its potential for personalized machine learning in a federated environment.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Model aggregation techniques in federated learning: A comprehensive survey
    Qi, Pian
    Chiaro, Diletta
    Guzzo, Antonella
    Ianni, Michele
    Fortino, Giancarlo
    Piccialli, Francesco
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 150 : 272 - 293
  • [2] Communication optimization techniques in Personalized Federated Learning: Applications, challenges and future directions
    Sabah, Fahad
    Chen, Yuwen
    Yang, Zhen
    Raheem, Abdul
    Azam, Muhammad
    Ahmad, Nadeem
    Sarwar, Raheem
    INFORMATION FUSION, 2025, 117
  • [3] A lightweight and personalized edge federated learning model
    Peiyan Yuan
    Ling Shi
    Xiaoyan Zhao
    Junna Zhang
    Complex & Intelligent Systems, 2024, 10 : 3577 - 3592
  • [4] A lightweight and personalized edge federated learning model
    Yuan, Peiyan
    Shi, Ling
    Zhao, Xiaoyan
    Zhang, Junna
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (03) : 3577 - 3592
  • [5] Federated Learning for IoT: A Survey of Techniques, Challenges, and Applications
    Dritsas, Elias
    Trigka, Maria
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2025, 14 (01)
  • [6] Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and Personalized Federated Learning
    Wang, Bokun
    Yuan, Zhuoning
    Ying, Yiming
    Yang, Tianbao
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [7] Personalized Federated Learning Based on Sparsity Regularized Bi⁃level Optimization
    Liu, Xi
    Liu, Bo
    Ji, Fanfan
    Yuan, Xiaotong
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2024, 37 (05): : 447 - 458
  • [8] Personalized Federated Learning with Robust Clustering Against Model Poisoning
    Ma, Jie
    Xie, Ming
    Long, Guodong
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2022, PT II, 2022, 13726 : 238 - 252
  • [9] Sparsified Random Partial Model Update for Personalized Federated Learning
    Hu, Xinyi
    Chen, Zihan
    Feng, Chenyuan
    Min, Geyong
    Quek, Tony Q. S.
    Yang, Howard H.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (04) : 3076 - 3091
  • [10] Research on Model Optimization Technology of Federated Learning
    Dai, Hang
    Hong, Yusheng
    2023 IEEE 8TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS, ICBDA, 2023, : 107 - 112