Automated identification and quantification of metastatic brain tumors and perilesional edema based on a deep learning neural network

被引:0
作者
Chou, Chi-Jen [1 ]
Yang, Huai-Che [2 ,3 ]
Chang, Po-Yao [4 ]
Chen, Ching-Jen [5 ]
Wu, Hsiu-Mei [2 ,6 ]
Lin, Chun-Fu [3 ]
Lai, I-Chun [2 ,7 ]
Peng, Syu-Jyun [8 ,9 ]
机构
[1] Kaohsiung Vet Gen Hosp, Dept Surg, Div Neurosurg, Kaohsiung, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Coll Med, Sch Med, Taipei, Taiwan
[3] Taipei Vet Gen Hosp, Neurol Inst, Dept Neurosurg, Taipei, Taiwan
[4] Natl Cent Univ, Dept Elect Engn, Taoyuan, Taiwan
[5] Univ Virginia Hlth Syst, Dept Neurol Surg, Charlottesville, VA 22903 USA
[6] Taipei Vet Gen Hosp, Dept Radiol, Taipei, Taiwan
[7] Taipei Vet Gen Hosp, Dept Heavy Particles & Radiat Oncol, Taipei, Taiwan
[8] Taipei Med Univ, Coll Med, Profess Master Program Artificial Intelligence Med, 250 Wuxing St, Taipei City 110, Taiwan
[9] Taipei Med Univ, Taipei Med Univ Hosp, Clin Big Data Res Ctr, Taipei 110301, Taiwan
关键词
Metastatic brain tumors; Perilesional edema; Deep learning neural network; Identification; Quantification; PERITUMORAL EDEMA; SEGMENTATION;
D O I
10.1007/s11060-023-04540-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PurposeThis paper presents a deep learning model for use in the automated segmentation of metastatic brain tumors and associated perilesional edema.MethodsThe model was trained using Gamma Knife surgical data (90 MRI sets from 46 patients), including the initial treatment plan and follow-up images (T1-weighted contrast-enhanced (T1cWI) and T2-weighted images (T2WI)) manually annotated by neurosurgeons to indicate the target tumor and edema regions. A mask region-based convolutional neural network was used to extract brain parenchyma, after which the DeepMedic 3D convolutional neural network was in the segmentation of tumors and edemas.ResultsFive-fold cross-validation demonstrated the efficacy of the brain parenchyma extraction model, achieving a Dice similarity coefficient of 96.4%. The segmentation models used for metastatic tumors and brain edema achieved Dice similarity coefficients of 71.6% and 85.1%, respectively. This study also presents an intuitive graphical user interface to facilitate the use of these models in clinical analysis.ConclusionThis paper introduces a deep learning model for the automated segmentation and quantification of brain metastatic tumors and perilesional edema trained using only T1cWI and T2WI. This technique could facilitate further research on metastatic tumors and perilesional edema as well as other intracranial lesions.
引用
收藏
页码:167 / 174
页数:8
相关论文
共 22 条
[1]   Vasogenic Edema Pattern in Brain Metastasis [J].
Bilgin, Ezel Yaltirik ;
Unal, Ozkan ;
Ciledag, Nazan .
JCPSP-JOURNAL OF THE COLLEGE OF PHYSICIANS AND SURGEONS PAKISTAN, 2022, 32 (08) :1020-1025
[2]   Displacement of Gray Matter and Incidence of Seizures in Patients with Cerebral Cavernous Malformations [J].
Chou, Chi-Jen ;
Lee, Cheng-Chia ;
Chen, Ching-Jen ;
Yang, Huai-Che ;
Peng, Syu-Jyun .
BIOMEDICINES, 2021, 9 (12)
[3]   Segmentation of Tumor and Edema Along With Healthy Tissues of Brain Using Wavelets and Neural Networks [J].
Demirhan, Ayse ;
Toru, Mustafa ;
Guler, Inan .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (04) :1451-1458
[4]   Significance of Primary Tumor Location and Histology for Brain Metastasis Development and Peritumoral Brain Edema in Lung Cancer [J].
Fabian, Katalin ;
Gyulai, Marton ;
Furak, Jozsef ;
Varallyay, Peter ;
Jackel, Marta ;
Bogos, Krisztina ;
Dome, Balazs ;
Papay, Judit ;
Timar, Jozsef ;
Szallasi, Zoltan ;
Moldvay, Judit .
ONCOLOGY, 2016, 91 (05) :237-242
[5]   Epidemiology of Metastatic Brain Tumors [J].
Fox, Benjamin D. ;
Cheung, Vincent J. ;
Patel, Akash J. ;
Suki, Dima ;
Rao, Ganesh .
NEUROSURGERY CLINICS OF NORTH AMERICA, 2011, 22 (01) :1-+
[6]   Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study [J].
Garde, E ;
Mortensen, EL ;
Krabbe, K ;
Rostrup, E ;
Larsson, HBW .
LANCET, 2000, 356 (9230) :628-634
[7]   Do brain T2/FLAIR white matter hyperintensities correspond to myelin loss in normal aging? A radiologic-neuropathologic correlation study [J].
Haller, Sven ;
Kovari, Eniko ;
Herrmann, Francois R. ;
Cuvinciuc, Victor ;
Tomm, Ann-Marie ;
Zulian, Gilbert B. ;
Lovblad, Karl-Olof ;
Giannakopoulos, Panteleimon ;
Bouras, Constantin .
ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2013, 1
[8]  
He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[9]   Emerging therapeutic targets for cerebral edema [J].
Jha, Ruchira M. ;
Raikwar, Sudhanshu P. ;
Mihaljevic, Sandra ;
Casabella, Amanda M. ;
Catapano, Joshua S. ;
Rani, Anupama ;
Desai, Shashvat ;
Gerzanich, Volodymyr ;
Simard, J. Marc .
EXPERT OPINION ON THERAPEUTIC TARGETS, 2021, 25 (11) :917-938
[10]   Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation [J].
Kamnitsas, Konstantinos ;
Ledig, Christian ;
Newcombe, Virginia F. J. ;
Sirnpson, Joanna P. ;
Kane, Andrew D. ;
Menon, David K. ;
Rueckert, Daniel ;
Glocker, Ben .
MEDICAL IMAGE ANALYSIS, 2017, 36 :61-78