Predicting multiple sclerosis severity with multimodal deep neural networks

被引:10
作者
Zhang, Kai [1 ]
Lincoln, John A. [2 ]
Jiang, Xiaoqian [1 ]
Bernstam, Elmer V. [1 ,3 ]
Shams, Shayan [1 ,4 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, McWilliams Sch Biomed Informat, Dept Hlth Data Sci & Artificial Intelligence, Houston, TX 77030 USA
[2] Univ Texas Hlth Sci Ctr, McGovern Med Sch, Dept Neurol, Houston, TX USA
[3] Univ Texas Hlth Sci Ctr, McGovern Med Sch, Dept Internal Med, Div Gen Internal Med, Houston, TX USA
[4] San Jose State Univ, Dept Appl Data Sci, San Jose, CA 95192 USA
关键词
Multimodal deep learning; Multiple sclerosis; Expanded disability status scale; DISABILITY; DIAGNOSIS; DAMAGE;
D O I
10.1186/s12911-023-02354-6
中图分类号
R-058 [];
学科分类号
摘要
Multiple Sclerosis (MS) is a chronic disease developed in the human brain and spinal cord, which can cause permanent damage or deterioration of the nerves. The severity of MS disease is monitored by the Expanded Disability Status Scale, composed of several functional sub-scores. Early and accurate classification of MS disease severity is critical for slowing down or preventing disease progression via applying early therapeutic intervention strategies. Recent advances in deep learning and the wide use of Electronic Health Records (EHR) create opportunities to apply data-driven and predictive modeling tools for this goal. Previous studies focusing on using single-modal machine learning and deep learning algorithms were limited in terms of prediction accuracy due to data insufficiency or model simplicity. In this paper, we proposed the idea of using patients' multimodal longitudinal and longitudinal EHR data to predict multiple sclerosis disease severity in the future. Our contribution has two main facets. First, we describe a pioneering effort to integrate structured EHR data, neuroimaging data and clinical notes to build a multi-modal deep learning framework to predict patient's MS severity. The proposed pipeline demonstrates up to 19% increase in terms of the area under the Area Under the Receiver Operating Characteristic curve (AUROC) compared to models using single-modal data. Second, the study also provides valuable insights regarding the amount useful signal embedded in each data modality with respect to MS disease prediction, which may improve data collection processes.
引用
收藏
页数:17
相关论文
共 40 条
[1]  
Balntas Vassileios, 2016, Bmvc, P1, DOI DOI 10.5244/C.30.119
[2]   Changes in the Risk of Reaching Multiple Sclerosis Disability Milestones In Recent Decades: A Nationwide Population-Based Cohort Study in Sweden [J].
Beiki, Omid ;
Frumento, Paolo ;
Bottai, Matteo ;
Manouchehrinia, Ali ;
Hillert, Jan .
JAMA NEUROLOGY, 2019, 76 (06) :665-671
[3]   Neuronal loss, demyelination and volume change in the multiple sclerosis neocortex [J].
Carassiti, D. ;
Altmann, D. R. ;
Petrova, N. ;
Pakkenberg, B. ;
Scaravilli, F. ;
Schmierer, K. .
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2018, 44 (04) :377-390
[4]   Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? [J].
Charles, P ;
Reynolds, R ;
Seilhean, D ;
Rougon, G ;
Aigrot, MS ;
Niezgoda, A ;
Zalc, B ;
Lubetzki, C .
BRAIN, 2002, 125 :1972-1979
[5]   Early recognition of multiple sclerosis using natural language processing of the electronic health record [J].
Chase, Herbert S. ;
Mitrani, Lindsey R. ;
Lu, Gabriel G. ;
Fulgieri, Dominick J. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2017, 17 :24
[6]   Clinical instrument to retrospectively capture levels of EDSS [J].
Ciotti, John Robert ;
Sanders, Noah ;
Salter, Amber ;
Berger, Joseph R. ;
Cross, Anne Haney ;
Chahin, Salim .
MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2020, 39
[7]   Relapses and progression of disability in multiple sclerosis. [J].
Confavreux, C ;
Vukusic, S ;
Moreau, T ;
Adeleine, P .
NEW ENGLAND JOURNAL OF MEDICINE, 2000, 343 (20) :1430-1438
[8]  
DCosta A., 2020, Proceedings of the 3rd clinical natural language processing workshop, DOI [10.18653/v1/2020.clinicalnlp-1.2, DOI 10.18653/V1/2020.CLINICALNLP-1.2]
[9]   Predicting clinical progression in multiple sclerosis after 6 and 12years [J].
Dekker, I ;
Eijlers, A. J. C. ;
Popescu, V ;
Balk, L. J. ;
Vrenken, H. ;
Wattjes, M. P. ;
Uitdehaag, B. M. J. ;
Killestein, J. ;
Geurts, J. J. G. ;
Barkhof, F. ;
Schoonheim, M. M. .
EUROPEAN JOURNAL OF NEUROLOGY, 2019, 26 (06) :893-902
[10]   Serum Neurofilament Light: A Biomarker of Neuronal Damage in Multiple Sclerosis [J].
Disanto, Giulio ;
Barro, Christian ;
Benkert, Pascal ;
Naegelin, Yvonne ;
Schadelin, Sabine ;
Giardiello, Antonella ;
Zecca, Chiara ;
Blennow, Kaj ;
Zetterberg, Henrik ;
Leppert, David ;
Kappos, Ludwig ;
Gobbi, Claudio ;
Kuhle, Jens .
ANNALS OF NEUROLOGY, 2017, 81 (06) :857-870