Application of machine learning and deep learning for cancer vaccine (rapid review)

被引:2
|
作者
Hooshmand, Mohaddeseh Nasiri [1 ]
Maserat, Elham [1 ]
机构
[1] Tarbiat Modares Univ, Fac Med Sci, Dept Med Informat, Tehran, Iran
关键词
Cancer antigens; Cancer vaccine; Machine learning; Data mining; Deep learning;
D O I
10.1007/s11042-023-17589-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cancer is a common and dangerous disease based on the World Health Organization. Much research has been done on new and effective cancer treatments, including cancer vaccines and the prediction of neoantigens using machine learning. The purpose of this study is to review articles that use machine learning to design cancer vaccines. This study is a rapid review study using search strategies and related keywords in Google Scholar, PubMed, and science direct databases from 2010 to 2021 in 2021 and revised in August 2023. 1250 articles were searched and 13 articles were selected for this review. We investigated them and then due to the importance and popularity of using machine learning in cancer vaccines recently, we compared them based on their machine learning technique. it is shown that neural networks with Python are used to predict neoantigens in 4 articles and with MATLAB in 2 articles, one article was about using the Fontom, one article with PERL, and one article with R; Other studies were about data mining with flowsom algorithm, multiple linear regression, logistics, and oncopepVCA, and the rest of articles do not provide information about machine learning implementation tools. Providing neural networks with Python is useful in the prediction of neoantigens due to the precision and examination of complex data sets. They use to predict HLA and peptide binding affinity, vaccines outcome, personalized cancer vaccines based on new data, the immune response, processing RNA and DNA sequences, and immunological analysis.
引用
收藏
页码:51211 / 51226
页数:16
相关论文
共 50 条
  • [41] A Review on Recent Progress in Machine Learning and Deep Learning Methods for Cancer Classification on Gene Expression Data
    Mazlan, Aina Umairah
    Sahabudin, Noor Azida
    Remli, Muhammad Akmal
    Ismail, Nor Syahidatul Nadiah
    Mohamad, Mohd Saberi
    Nies, Hui Wen
    Abd Warif, Nor Bakiah
    PROCESSES, 2021, 9 (08)
  • [42] A Review of Deep Learning and Machine Learning Techniques for Brain and Breast Cancer Detection: Challenges and Future Directions
    Dhole, Nandini V.
    Dixit, Vaibhav V.
    Mahajan, Rupesh G.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2025,
  • [43] The future of skin cancer diagnosis: a comprehensive systematic literature review of machine learning and deep learning models
    Adamu, Shamsuddeen
    Alhussian, Hitham
    Aziz, Norshakirah
    Abdulkadir, Said Jadid
    Alwadin, Ayed
    Imam, Abdullahi Abubakar
    Abdullahi, Mujaheed
    Garba, Aliyu
    Saidu, Yahaya
    COGENT ENGINEERING, 2024, 11 (01):
  • [44] Application of artificial intelligence for cancer research; integrated analysis of cancer omics data using machine learning and deep learning
    Hamamoto, Ryuji
    Yu, Jinhua
    CANCER SCIENCE, 2018, 109 : 287 - 287
  • [45] Prediction of Preeclampsia Using Machine Learning and Deep Learning Models: A Review
    Aljameel, Sumayh S.
    Alzahrani, Manar
    Almusharraf, Reem
    Altukhais, Majd
    Alshaia, Sadeem
    Sahlouli, Hanan
    Aslam, Nida
    Khan, Irfan Ullah
    Alabbad, Dina A.
    Alsumayt, Albandari
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (01)
  • [46] A review of deep learning and machine learning techniques for hydrological inflow forecasting
    Latif, Sarmad Dashti
    Ahmed, Ali Najah
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2023, 25 (11) : 12189 - 12216
  • [47] A review of deep learning and machine learning techniques for hydrological inflow forecasting
    Sarmad Dashti Latif
    Ali Najah Ahmed
    Environment, Development and Sustainability, 2023, 25 : 12189 - 12216
  • [48] Review of Machine Learning and Deep Learning Techniques for Medical Image Analysis
    Saratkar, Saniya
    Raut, Rohini
    Thute, Trupti
    Chaudhari, Aarti
    Thakre, Gaitri
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 1437 - 1443
  • [49] A Review on the Effectiveness of Machine Learning and Deep Learning Algorithms for Cyber Security
    Geetha, R.
    Thilagam, T.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (04) : 2861 - 2879
  • [50] A Review on Text Sentiment Analysis With Machine Learning and Deep Learning Techniques
    Mamani-Coaquira, Yonatan
    Villanueva, Edwin
    IEEE ACCESS, 2024, 12 : 193115 - 193130