Application of machine learning and deep learning for cancer vaccine (rapid review)

被引:2
|
作者
Hooshmand, Mohaddeseh Nasiri [1 ]
Maserat, Elham [1 ]
机构
[1] Tarbiat Modares Univ, Fac Med Sci, Dept Med Informat, Tehran, Iran
关键词
Cancer antigens; Cancer vaccine; Machine learning; Data mining; Deep learning;
D O I
10.1007/s11042-023-17589-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cancer is a common and dangerous disease based on the World Health Organization. Much research has been done on new and effective cancer treatments, including cancer vaccines and the prediction of neoantigens using machine learning. The purpose of this study is to review articles that use machine learning to design cancer vaccines. This study is a rapid review study using search strategies and related keywords in Google Scholar, PubMed, and science direct databases from 2010 to 2021 in 2021 and revised in August 2023. 1250 articles were searched and 13 articles were selected for this review. We investigated them and then due to the importance and popularity of using machine learning in cancer vaccines recently, we compared them based on their machine learning technique. it is shown that neural networks with Python are used to predict neoantigens in 4 articles and with MATLAB in 2 articles, one article was about using the Fontom, one article with PERL, and one article with R; Other studies were about data mining with flowsom algorithm, multiple linear regression, logistics, and oncopepVCA, and the rest of articles do not provide information about machine learning implementation tools. Providing neural networks with Python is useful in the prediction of neoantigens due to the precision and examination of complex data sets. They use to predict HLA and peptide binding affinity, vaccines outcome, personalized cancer vaccines based on new data, the immune response, processing RNA and DNA sequences, and immunological analysis.
引用
收藏
页码:51211 / 51226
页数:16
相关论文
共 50 条
  • [21] Phishing Detection Leveraging Machine Learning and Deep Learning: A Review
    Divakaran, Dinil Mon
    Oest, Adam
    IEEE SECURITY & PRIVACY, 2022, 20 (05) : 86 - 95
  • [22] Review of machine learning and deep learning models for toxicity prediction
    Guo, Wenjing
    Liu, Jie
    Dong, Fan
    Song, Meng
    Li, Zoe
    Khan, Md Kamrul Hasan
    Patterson, Tucker A.
    Hong, Huixiao
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (21) : 1952 - 1973
  • [23] Deep Learning and Machine Learning Techniques for Credit Scoring: A Review
    Wube, Hana Demma
    Esubalew, Sintayehu Zekarias
    Weldesellasie, Firesew Fayiso
    Debelee, Taye Girma
    PAN-AFRICAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PT II, PANAFRICON AI 2023, 2024, 2069 : 30 - 61
  • [24] Systematic Review of Deep Learning and Machine Learning for Building Energy
    Ardabili, Sina
    Abdolalizadeh, Leila
    Mako, Csaba
    Torok, Bernat
    Mosavi, Amir
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [25] Review on Face Recognition by Machine Learning and Deep Learning Approaches
    Jain, Pooja
    Gupta, Sheifali
    Ramkumar, K. R.
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2019, : 528 - 534
  • [26] Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review
    Painuli, Deepak
    Bhardwaj, Suyash
    Kose, Utku
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [27] Topology optimization via machine learning and deep learning: a review
    Shin, Seungyeon
    Shin, Dongju
    Kang, Namwoo
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2023, 10 (04) : 1736 - 1766
  • [28] Style Transfer Review: Traditional Machine Learning to Deep Learning
    Xu, Yao
    Xia, Min
    Hu, Kai
    Zhou, Siyi
    Weng, Liguo
    INFORMATION, 2025, 16 (02)
  • [29] Application of Deep Learning in Histopathology Images of Breast Cancer: A Review
    Zhao, Yue
    Zhang, Jie
    Hu, Dayu
    Qu, Hui
    Tian, Ye
    Cui, Xiaoyu
    MICROMACHINES, 2022, 13 (12)
  • [30] Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge
    Zhang, Wengang
    Gu, Xin
    Tang, Libin
    Yin, Yueping
    Liu, Dongsheng
    Zhang, Yanmei
    GONDWANA RESEARCH, 2022, 109 : 1 - 17