USE OF SAR BASED REGRESSORS FOR LEAF AREA INDEX (LAI) SPATIAL/TEMPORAL FILLING: A MACHINE LEARNING (ML)-BASED OUTLOOK

被引:0
作者
Mastro, Pietro [1 ]
Boschetti, Mirco [1 ]
De Peppo, Margherita [1 ]
Pepe, Antonio [1 ]
机构
[1] Italian Natl Res Council, Inst Elect Sensing Environm IREA, 328 Diocleziano, I-80124 Naples, Italy
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
LAI; SAR; Interferometry; Machine Learning (ML); Gaussian Processes (GPs); GREEN LAI; RADAR; RETRIEVAL; MISSIONS; SYSTEM;
D O I
10.1109/IGARSS52108.2023.10281554
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study investigates the efficacy of incoherent and coherent SAR descriptors for filling spatial and temporal gaps in optical-driven Leaf Area Index (LAI) time series. Within this context, an artificial intelligence (AI) algorithm based on Multi-Output Gaussian Process (MOGP) [1], [2] demonstrated its effectiveness in handling the different information derived from SAR signatures in a unified corpus. The study utilizes sequences of Sentinel-2 imagery to derive Leaf Area Index (LAI) maps, while Sentinel-1 observations over the same area are utilized to obtain SAR backscatter coefficients and interferometric coherence data. This comprehensive dataset is then employed as input for training the MOGP model. Experimental tests demonstrate the usefulness of the MOGP model in obtaining accurate LAI time series even during very cloudy periods.
引用
收藏
页码:2113 / 2116
页数:4
相关论文
共 35 条
[1]   Kernels for Vector-Valued Functions: A Review [J].
Alvarez, Mauricio A. ;
Rosasco, Lorenzo ;
Lawrence, Neil D. .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (03) :195-266
[2]  
[Anonymous], P IEEE
[3]   Could Vegetation Index be Derive from Synthetic Aperture Radar? - The Linear Relationship between Interferometric Coherence and NDVI [J].
Bai, Zechao ;
Fang, Shibo ;
Gao, Jian ;
Zhang, Yuan ;
Jin, Guowang ;
Wang, Shuqing ;
Zhu, Yongchao ;
Xu, Jiaxin .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]   Efficient Gaussian process regression for large datasets [J].
Banerjee, Anjishnu ;
Dunson, David B. ;
Tokdar, Surya T. .
BIOMETRIKA, 2013, 100 (01) :75-89
[5]   ESA's sentinel missions in support of Earth system science [J].
Berger, Michael ;
Moreno, Jose ;
Johannessen, Johnny A. ;
Levelt, Pieternel F. ;
Hanssen, Ramon F. .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :84-90
[6]  
De Peppo M., 2022, COMMUNICATIONS COMPU, P222, DOI [10.1007/978-3-031, DOI 10.1007/978-3-031-17439-1_16]
[7]   Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world [J].
Defourny, Pierre ;
Bontemps, Sophie ;
Bellemans, Nicolas ;
Cara, Cosmin ;
Dedieu, Gerard ;
Guzzonato, Eric ;
Hagolle, Olivier ;
Inglada, Jordi ;
Nicola, Laurentiu ;
Rabaute, Thierry ;
Savinaud, Mickael ;
Udroiu, Cosmin ;
Valero, Silvia ;
Begue, Agnes ;
Dejoux, Jean-Francois ;
El Harti, Abderrazak ;
Ezzahar, Jamal ;
Kussul, Nataliia ;
Labbassi, Kamal ;
Lebourgeois, Valentine ;
Miao, Zhang ;
Newby, Terrence ;
Nyamugama, Adolph ;
Salh, Norakhan ;
Shelestov, Andrii ;
Simonneaux, Vincent ;
Traore, Pierre Sibiry ;
Traore, Souleymane S. ;
Koetz, Benjamin .
REMOTE SENSING OF ENVIRONMENT, 2019, 221 :551-568
[8]   A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems [J].
Delegido, J. ;
Verrelst, J. ;
Meza, C. M. ;
Rivera, J. P. ;
Alonso, L. ;
Moreno, J. .
EUROPEAN JOURNAL OF AGRONOMY, 2013, 46 :42-52
[9]   Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content [J].
Delegido, Jesus ;
Verrelst, Jochem ;
Alonso, Luis ;
Moreno, Jose .
SENSORS, 2011, 11 (07) :7063-7081
[10]   Gaussian Process Regression for Materials and Molecules [J].
Deringer, Volker L. ;
Bartok, Albert P. ;
Bernstein, Noam ;
Wilkins, David M. ;
Ceriotti, Michele ;
Csanyi, Gabor .
CHEMICAL REVIEWS, 2021, 121 (16) :10073-10141