Superhydrophilic/Superoleophobic Mesh/Chitosan-MnO2 Membrane for Robust and Highly Efficient Separation of Oil-in-Water Emulsions

被引:1
|
作者
Elmi, Fatemeh [1 ]
Valookolaee, Fatemeh Hosseini [1 ]
Taleshi, Mojtaba Shokrollahzadeh [1 ]
机构
[1] Univ Mazandaran, Fac Marine & Environm Sci, Dept Marine Chem, Babolsar, Iran
来源
WATER AIR AND SOIL POLLUTION | 2023年 / 234卷 / 11期
关键词
Oil-in-water emulsion; Mesh; Chitosan-MnO2; Superhydrophilic; Superoleophobic; Fouling resistance; OIL/WATER SEPARATION; CHITOSAN; SURFACES; WETTABILITY; DEGRADATION; MESH;
D O I
10.1007/s11270-023-06712-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, in order to separate oil-in-water emulsions, superhydrophilic and underwater superoleophobic membrane was prepared, and its fouling resistance during oil-in-water separation was evaluated. Chitosan (derived from shrimp shells)-MnO2 was deposited on the mesh surface by dip coating. The coated membrane was characterized using ATR-FTIR, FE-SEM, water contact angle (WCA), and underwater oil contact angle (OCA) analyses. The results showed that underwater superoleophobicity and superhydrophilicity were achieved successfully. The superhydrophilicity of the chitosan-MnO2-coated membrane was confirmed by WCA = 0. The underwater superoleophobicity of the coated mesh was verified by OCA = 163.5(degrees). The filtration results show that the prepared membrane can separate a wide range of oil-in-water emulsions with separation efficiency >= 99%. The separation efficiency was maintained for thirty cycles. The permeation flux across the membrane was calculated. The flux for n-decane in water emulsion is 190.0 1 m(2) h(-1). Antifouling properties of the chitosan-MnO2-coated membrane were evaluated using dead-end filtration. Also, application of classical models revealed that the fouling mechanism is cake filtration for chitosan-MnO2-coated mesh. The fabricated membrane with chitosan-MnO2 has significant efficiency in separating oil in water from oily effluents.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Tannin-inspired superhydrophilic and underwater superoleophobic polypropylene membrane for effective oil/water emulsions separation
    Song, You-Zhi
    Kong, Xin
    Yin, Xue
    Zhang, Yin
    Sun, Chuang-Chao
    Yuan, Jia-Jia
    Zhu, Baoku
    Zhu, Li-Ping
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2017, 522 : 585 - 592
  • [32] Modified superhydrophilic and underwater superoleophobic PVDF membrane with ultralow oil-adhesion for highly efficient oil/water emulsion separation
    Liu, Jun
    Li, Peng
    Chen, Li
    Feng, Yang
    He, Wanxia
    Lv, Xiaomeng
    MATERIALS LETTERS, 2016, 185 : 169 - 172
  • [33] 3D printed robust superhydrophilic and underwater superoleophobic composite membrane for high efficient oil/water separation
    Li, Xipeng
    Shan, Huiting
    Zhang, Wei
    Li, Baoan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 237 (237)
  • [34] Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation
    Ge, Jianlong
    Zhang, Jichao
    Wang, Fei
    Li, Zhaoling
    Yu, Jianyong
    Ding, Bin
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (02) : 497 - 502
  • [35] Superhydrophilic/underwater superoleophobic oil-in-water emulsion separation membrane modified by the co-deposition of polydopamine and chitosan-tripolyphosphate nanoparticles
    Feng Shijie
    Zhao Jiefeng
    Zhang Pengyu
    Gao Yunling
    Yun Junxian
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (03):
  • [36] One-step transformation of highly hydrophobic membranes into superhydrophilic and underwater superoleophobic ones for high-efficiency separation of oil-in-water emulsions
    Wang, Zhenxing
    Ji, Shengqiang
    He, Fang
    Cao, Moyuan
    Peng, Shaoqin
    Li, Yuexiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (08) : 3391 - 3396
  • [37] A mussel inspired highly stable graphene oxide membrane for efficient oil-in-water emulsions separation
    Liu, Zhanchao
    Wu, Weifu
    Liu, Yan
    Qin, Changchun
    Meng, Minjia
    Jiang, Yinhua
    Qiu, Jian
    Peng, Jianbo
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 199 : 37 - 46
  • [38] Efficient separation of crude oil-in-water emulsion based on a robust underwater superoleophobic titanium dioxide-coated mesh
    Liu, Weimin
    Cui, Mengke
    Shen, Yongqian
    Mu, Peng
    Yang, Yaoxia
    Li, Jian
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (07) : 2705 - 2713
  • [39] Bioinspired superoleophobic/superhydrophilic functionalized cotton for efficient separation of immiscible oil-water mixtures and oil-water emulsions
    Li, Feiran
    Bhushan, Bharat
    Pan, Yunlu
    Zhao, Xuezeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 548 : 123 - 130
  • [40] Waste for Waste: Interface-Intensified Durable Superhydrophilic-Superoleophobic Collagen Fiber Membrane for Efficient Separation of Cationic Surfactant-Stabilized Oil-in-Water Emulsions
    Ye, Xiaoxia
    Zheng, Zhihong
    Chi, Ruiyang
    Liu, Juan
    Chen, Jie
    Luo, Wei
    LANGMUIR, 2023, 39 (51) : 18815 - 18824