Robust Solid Electrolyte Interphase Induced by Dication Deep Eutectic Electrolytes for Sustainable Zn Anodes

被引:2
|
作者
Li, Chunpeng [1 ]
Zhang, Jun [2 ]
Zhang, Kai [3 ]
Zhang, Anping [4 ]
Jian, Wei [1 ]
Jiang, Ping [1 ]
Wu, Zhong-Shuai [4 ]
Ruan, Dianbo [1 ]
机构
[1] Ningbo Univ, Inst Adv Energy Storage Technol & Equipment, Ningbo 315201, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Adv Li Ion Battery Engn Lab, Ningbo 315201, Peoples R China
[3] Nankai Univ, Coll Chem, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
[4] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
关键词
aqueous Na-Zn ion hybrid battery; hybrid hydrateddeep eutectic electrolytes; solid electrolyte interphase; solvation structure; Zn anode; HIGH-ENERGY; BATTERIES; SOLVENT;
D O I
10.1021/acssuschemeng.3c04872
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous Na-Zn ion batteries are promising for large-scale energy storage due to their low cost and high output voltage potential. However, the formed dendrites and notorious side reactions of zinc anodes lead to rapid performance degradation. Here, a sodium-zinc dication hybrid hydrated deep eutectic electrolyte system (NZDES) is proposed, in which organic ligands and all water molecules participate in NZDES's internal solvation structure networks, resulting in the suppressed side reaction at the Zn anode. Furthermore, the unique aqueous Zn2+ solvation shell is efficiently regulated by Na+, enabling high Zn deposition/stripping reversibility (96.5% Coulombic efficiency). Meanwhile, the decomposition of solvated methylsulfonylmethane (MSM) forms the enhanced solid electrolyte interphase, which improves the smoothness of the Zn anode and further suppresses the decomposition of water. With these merits, the CuHCF/Zn hybrid batteries with dication deep eutectic electrolytes exhibit a high capacity retention of >91.6% after 3000 cycles at 10 C with a 1.9 V open circuit voltage. The results provide a potential design strategy for an effective solid electrolyte interface for aqueous zinc ion batteries.
引用
收藏
页码:15470 / 15479
页数:10
相关论文
共 50 条
  • [31] Enabling Ultrastable Alkali Metal Anodes by Artificial Solid Electrolyte Interphase Fluorination
    Cheng, Yifeng
    Yang, Xuming
    Li, Menghao
    Li, Xiangyan
    Lu, Xinzhen
    Wu, Duojie
    Han, Bing
    Zhang, Qing
    Zhu, Yuanmin
    Gu, Meng
    NANO LETTERS, 2022, 22 (11) : 4347 - 4353
  • [32] Solid Electrolyte Interphase elastic instability in Li-ion battery anodes
    De Pascalis, Riccardo
    Lisi, Federico
    Napoli, Gaetano
    EXTREME MECHANICS LETTERS, 2023, 61
  • [33] Mechanical studies of the solid electrolyte interphase on anodes in lithium and lithium ion batteries
    McBrayer, Josefine D.
    Apblett, Christopher A.
    Harrison, Katharine L.
    Fenton, Kyle R.
    Minteer, Shelley D.
    NANOTECHNOLOGY, 2021, 32 (50)
  • [34] Tailoring the Lithium Solid Electrolyte Interphase for Highly Concentrated Electrolytes with Direct Exposure to Halogenated Solvents
    Thornburg, Eric S.
    Haasch, Richard T.
    Gewirth, Andrew A.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (03) : 2768 - 2779
  • [35] Insight into the Solid Electrolyte Interphase Formation in Bis(fluorosulfonyl)Imide Based Ionic Liquid Electrolytes
    Jafta, Charl J.
    Sun, Xiao-Guang
    Lyu, Hailong
    Chen, Hao
    Thapaliya, Bishnu P.
    Heller, William T.
    Cuneo, Matthew J.
    Mayes, Richard T.
    Paranthaman, Mariappan Parans
    Dai, Sheng
    Bridges, Craig A.
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (23)
  • [36] Critical Roles of Mechanical Properties of Solid Electrolyte Interphase for Potassium Metal Anodes
    Gao, Yao
    Hou, Zhen
    Zhou, Rui
    Wang, Danni
    Guo, Xuyun
    Zhu, Ye
    Zhang, Biao
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (17)
  • [37] In Situ Constructing Solid Electrolyte Interphase and Optimizing Solvation Shell for a Stable Zn Anode
    Xu, Xuena
    Zhu, Xiang
    Li, Shan
    Xu, Yan
    Sun, Limei
    Shi, Liluo
    Song, Ming
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (01) : 288 - 297
  • [38] The Origin of Fast Lithium-Ion Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes
    Ma, Xia-Xia
    Shen, Xin
    Chen, Xiang
    Fu, Zhong-Heng
    Yao, Nan
    Zhang, Rui
    Zhang, Qiang
    SMALL STRUCTURES, 2022, 3 (08):
  • [39] An Anion-Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes
    Wang, Zhenxing
    Qi, Fulai
    Yin, Lichang
    Shi, Ying
    Sun, Chengguo
    An, Baigang
    Cheng, Hui-Ming
    Li, Feng
    ADVANCED ENERGY MATERIALS, 2020, 10 (14)
  • [40] Efficient Low-Temperature Cycling of Lithium Metal Anodes by Tailoring the Solid-Electrolyte Interphase
    Thenuwara, Akila C.
    Shetty, Pralav P.
    Kondekar, Neha
    Sandoval, Stephanie E.
    Cavallaro, Kelsey
    May, Richard
    Yang, Chi-Ta
    Marbella, Lauren E.
    Qi, Yue
    McDowell, Matthew T.
    ACS ENERGY LETTERS, 2020, 5 (07): : 2411 - 2420