MTGDC: A Multi-Scale Tensor Graph Diffusion Clustering for Single-Cell RNA Sequencing Data

被引:4
|
作者
Liu, Qiaoming [1 ]
Wang, Dong [2 ]
Zhou, Li [2 ]
Li, Jie [2 ]
Wang, Guohua [2 ]
机构
[1] Harbin Inst Technol, Zhengzhou Res Inst, Sch Med & Hlth, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Tensors; Clustering algorithms; Sequential analysis; RNA; Diffusion processes; Topology; Kernel; Clustering; single-cell RNA-seq; tensor graph; diffusion mapping; cell heterogeneity; GENE-EXPRESSION; HETEROGENEITY; IDENTIFICATION; FUSION;
D O I
10.1109/TCBB.2023.3293112
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) is a new technology that focuses on the expression levels for each cell to study cell heterogeneity. Thus, new computational methods matching scRNA-seq are designed to detect cell types among various cell groups. Herein, we propose a Multi-scale Tensor Graph Diffusion Clustering (MTGDC) for single-cell RNA sequencing data. It has the following mechanisms: 1) To mine potential similarity distributions among cells, we design a multi-scale affinity learning method to construct a fully connected graph between cells; 2) For each affinity matrix, we propose an efficient tensor graph diffusion learning framework to learn high-order information among multi-scale affinity matrices. First, the tensor graph is explicitly introduced to measure cell-cell edges with local high-order relationship information. To further preserve more global topology structure information in the tensor graph, MTGDC implicitly considers the propagation of information via a data diffusion process by designing a simple and efficient tensor graph diffusion update algorithm. 3) Finally, we mix together the multi-scale tensor graphs to obtain the fusion high-order affinity matrix and apply it to spectral clustering. Experiments and case studies showed that MTGDC had obvious advantages over the state-of-art algorithms in robustness, accuracy, visualization, and speed.
引用
收藏
页码:3056 / 3067
页数:12
相关论文
共 50 条
  • [41] EnTSSR: A Weighted Ensemble Learning Method to Impute Single-Cell RNA Sequencing Data
    Lu, Fan
    Lin, Yilong
    Yuan, Chongbin
    Zhang, Xiao-Fei
    Le Ou-Yang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (06) : 2781 - 2787
  • [42] Towards multi-fusion graph neural network for single-cell RNA sequence clustering
    Yang, Chen-Min
    Huang, Dong
    Xu, Yuan-Kun
    He, Xiuting
    Zhang, Guang-Yu
    Wang, Chang-Dong
    NEUROCOMPUTING, 2025, 631
  • [43] Complex Analysis of Single-Cell RNA Sequencing Data
    Anna A. Khozyainova
    Anna A. Valyaeva
    Mikhail S. Arbatsky
    Sergey V. Isaev
    Pavel S. Iamshchikov
    Egor V. Volchkov
    Marat S. Sabirov
    Viktoria R. Zainullina
    Vadim I. Chechekhin
    Rostislav S. Vorobev
    Maxim E. Menyailo
    Pyotr A. Tyurin-Kuzmin
    Evgeny V. Denisov
    Biochemistry (Moscow), 2023, 88 : 231 - 252
  • [44] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [45] scConsensus: combining supervised and unsupervised clustering for cell type identification in single-cell RNA sequencing data
    Bobby Ranjan
    Florian Schmidt
    Wenjie Sun
    Jinyu Park
    Mohammad Amin Honardoost
    Joanna Tan
    Nirmala Arul Rayan
    Shyam Prabhakar
    BMC Bioinformatics, 22
  • [46] Complex Analysis of Single-Cell RNA Sequencing Data
    Khozyainova, Anna A. A.
    Valyaeva, Anna A. A.
    Arbatsky, Mikhail S. S.
    Isaev, Sergey V. V.
    Iamshchikov, Pavel S. S.
    Volchkov, Egor V. V.
    Sabirov, Marat S. S.
    Zainullina, Viktoria R. R.
    Chechekhin, Vadim I. I.
    Vorobev, Rostislav S. S.
    Menyailo, Maxim E. E.
    Tyurin-Kuzmin, Pyotr A. A.
    Denisov, Evgeny V. V.
    BIOCHEMISTRY-MOSCOW, 2023, 88 (02) : 231 - 252
  • [47] Splatter: simulation of single-cell RNA sequencing data
    Zappia, Luke
    Phipson, Belinda
    Oshlack, Alicia
    GENOME BIOLOGY, 2017, 18
  • [48] SAREV: A review on statistical analytics of single-cell RNA sequencing data
    Ellis, Dorothy
    Wu, Dongyuan
    Datta, Susmita
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (04):
  • [49] jS']jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data
    Wu, Wenming
    Liu, Zaiyi
    Ma, Xiaoke
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [50] NISC: Neural Network-Imputation for Single-Cell RNA Sequencing and Cell Type Clustering
    Zhang, Xiang
    Chen, Zhuo
    Bhadani, Rahul
    Cao, Siyang
    Lu, Meng
    Lytal, Nicholas
    Chen, Yin
    An, Lingling
    FRONTIERS IN GENETICS, 2022, 13