MTGDC: A Multi-Scale Tensor Graph Diffusion Clustering for Single-Cell RNA Sequencing Data

被引:4
|
作者
Liu, Qiaoming [1 ]
Wang, Dong [2 ]
Zhou, Li [2 ]
Li, Jie [2 ]
Wang, Guohua [2 ]
机构
[1] Harbin Inst Technol, Zhengzhou Res Inst, Sch Med & Hlth, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Tensors; Clustering algorithms; Sequential analysis; RNA; Diffusion processes; Topology; Kernel; Clustering; single-cell RNA-seq; tensor graph; diffusion mapping; cell heterogeneity; GENE-EXPRESSION; HETEROGENEITY; IDENTIFICATION; FUSION;
D O I
10.1109/TCBB.2023.3293112
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) is a new technology that focuses on the expression levels for each cell to study cell heterogeneity. Thus, new computational methods matching scRNA-seq are designed to detect cell types among various cell groups. Herein, we propose a Multi-scale Tensor Graph Diffusion Clustering (MTGDC) for single-cell RNA sequencing data. It has the following mechanisms: 1) To mine potential similarity distributions among cells, we design a multi-scale affinity learning method to construct a fully connected graph between cells; 2) For each affinity matrix, we propose an efficient tensor graph diffusion learning framework to learn high-order information among multi-scale affinity matrices. First, the tensor graph is explicitly introduced to measure cell-cell edges with local high-order relationship information. To further preserve more global topology structure information in the tensor graph, MTGDC implicitly considers the propagation of information via a data diffusion process by designing a simple and efficient tensor graph diffusion update algorithm. 3) Finally, we mix together the multi-scale tensor graphs to obtain the fusion high-order affinity matrix and apply it to spectral clustering. Experiments and case studies showed that MTGDC had obvious advantages over the state-of-art algorithms in robustness, accuracy, visualization, and speed.
引用
收藏
页码:3056 / 3067
页数:12
相关论文
共 50 条
  • [21] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [22] Effectively Clustering Single Cell RNA Sequencing Data by Sparse Representation
    Li, Rui-Yi
    Wang, Zhiye
    Guan, Jihong
    Zhou, Shuigeng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (06) : 3425 - 3434
  • [23] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [24] Single-cell RNA sequencing data analysis utilizing multi-type graph neural networks
    Xu, Li
    Li, Zhenpeng
    Ren, Jiaxu
    Liu, Shuaipeng
    Xu, Yiming
    Computers in Biology and Medicine, 2024, 179
  • [25] A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data
    Zhu, Xiaoshu
    Li, Hong-Dong
    Xu, Yunpei
    Guo, Lilu
    Wu, Fang-Xiang
    Duan, Guihua
    Wang, Jianxin
    GENES, 2019, 10 (02)
  • [26] A deep matrix factorization based approach for single-cell RNA-seq data clustering
    Liang, Zhenlan
    Zheng, Ruiqing
    Chen, Siqi
    Yan, Xuhua
    Li, Min
    METHODS, 2022, 205 : 114 - 122
  • [27] Single-Cell Clustering Based on Shared Nearest Neighbor and Graph Partitioning
    Zhu, Xiaoshu
    Zhang, Jie
    Xu, Yunpei
    Wang, Jianxin
    Peng, Xiaoqing
    Li, Hong-Dong
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2020, 12 (02) : 117 - 130
  • [28] SNV identification from single-cell RNA sequencing data
    Schnepp, Patricia M.
    Chen, Mengjie
    Keller, Evan T.
    Zhou, Xiang
    HUMAN MOLECULAR GENETICS, 2019, 28 (21) : 3569 - 3583
  • [29] Analysis of transcriptome of single-cell RNA sequencing data using machine learning
    Rajesh, Mothe
    Martha, Sheshikala
    SOFT COMPUTING, 2023, 27 (13) : 9131 - 9141
  • [30] Machine learning and statistical methods for clustering single-cell RNA-sequencing data
    Petegrosso, Raphael
    Li, Zhuliu
    Kuang, Rui
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1209 - 1223