MTGDC: A Multi-Scale Tensor Graph Diffusion Clustering for Single-Cell RNA Sequencing Data

被引:7
作者
Liu, Qiaoming [1 ]
Wang, Dong [2 ]
Zhou, Li [2 ]
Li, Jie [2 ]
Wang, Guohua [2 ]
机构
[1] Harbin Inst Technol, Zhengzhou Res Inst, Sch Med & Hlth, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Tensors; Clustering algorithms; Sequential analysis; RNA; Diffusion processes; Topology; Kernel; Clustering; single-cell RNA-seq; tensor graph; diffusion mapping; cell heterogeneity; GENE-EXPRESSION; HETEROGENEITY; IDENTIFICATION; FUSION;
D O I
10.1109/TCBB.2023.3293112
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) is a new technology that focuses on the expression levels for each cell to study cell heterogeneity. Thus, new computational methods matching scRNA-seq are designed to detect cell types among various cell groups. Herein, we propose a Multi-scale Tensor Graph Diffusion Clustering (MTGDC) for single-cell RNA sequencing data. It has the following mechanisms: 1) To mine potential similarity distributions among cells, we design a multi-scale affinity learning method to construct a fully connected graph between cells; 2) For each affinity matrix, we propose an efficient tensor graph diffusion learning framework to learn high-order information among multi-scale affinity matrices. First, the tensor graph is explicitly introduced to measure cell-cell edges with local high-order relationship information. To further preserve more global topology structure information in the tensor graph, MTGDC implicitly considers the propagation of information via a data diffusion process by designing a simple and efficient tensor graph diffusion update algorithm. 3) Finally, we mix together the multi-scale tensor graphs to obtain the fusion high-order affinity matrix and apply it to spectral clustering. Experiments and case studies showed that MTGDC had obvious advantages over the state-of-art algorithms in robustness, accuracy, visualization, and speed.
引用
收藏
页码:3056 / 3067
页数:12
相关论文
共 49 条
[1]   Integration of Single-Cell Genomics Datasets [J].
Adey, Andrew C. .
CELL, 2019, 177 (07) :1677-U23
[2]   Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity [J].
Angermueller, Christof ;
Clark, Stephen J. ;
Lee, Heather J. ;
Macaulay, Iain C. ;
Teng, Mabel J. ;
Hu, Tim Xiaoming ;
Krueger, Felix ;
Smallwood, Sebastien A. ;
Ponting, Chris P. ;
Voet, Thierry ;
Kelsey, Gavin ;
Stegle, Oliver ;
Reik, Wolf .
NATURE METHODS, 2016, 13 (03) :229-+
[3]  
[Anonymous], 2007, P 19 C NEURAL INFORM, DOI DOI 10.7551/MITPRESS/7503.003.0205
[4]   Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells [J].
Buettner, Florian ;
Natarajan, Kedar N. ;
Casale, F. Paolo ;
Proserpio, Valentina ;
Scialdone, Antonio ;
Theis, Fabian J. ;
Teichmann, Sarah A. ;
Marioni, John C. ;
Stegie, Oliver .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :155-160
[5]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[6]   A molecular census of arcuate hypothalamus and median eminence cell types [J].
Campbell, John N. ;
Macosko, Evan Z. ;
Fenselau, Henning ;
Pers, Tune H. ;
Lyubetskaya, Anna ;
Tenen, Danielle ;
Goldman, Melissa ;
Verstegen, Anne M. J. ;
Resch, Jon M. ;
McCarroll, Steven A. ;
Rosen, Evan D. ;
Lowell, Bradford B. ;
Tsai, Linus T. .
NATURE NEUROSCIENCE, 2017, 20 (03) :484-496
[7]   Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity [J].
Chen, Renchao ;
Wu, Xiaoji ;
Jiang, Lan ;
Zhang, Yi .
CELL REPORTS, 2017, 18 (13) :3227-3241
[8]   VPAC: Variational projection for accurate clustering of single-cell transcriptomic data [J].
Chen, Shengquan ;
Hua, Kui ;
Cui, Hongfei ;
Jiang, Rui .
BMC BIOINFORMATICS, 2019, 20 (Suppl 7)
[9]   Graph Fusion Network for Text Classification [J].
Dai, Yong ;
Shou, Linjun ;
Gong, Ming ;
Xia, Xiaolin ;
Kang, Zhao ;
Xu, Zenglin ;
Jiang, Daxin .
KNOWLEDGE-BASED SYSTEMS, 2022, 236
[10]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196