Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis

被引:5
|
作者
Sun, Kai [1 ]
Xu, Xinghan [2 ]
Lu, Nannan [3 ]
Xia, Huijuan [1 ]
Han, Min [4 ,5 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Fac Infrastruct Engn, Dalian 116024, Peoples R China
[3] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
[4] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equipm, Minist Educ, Dalian 116024, Peoples R China
[5] Dalian Univ Technol, Profess Technol Innovat Ctr Distributed Control In, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial domain adaptation (DA); cross-domain fault diagnosis; discriminative features learning; joint alignment; NETWORK;
D O I
10.1109/TIM.2023.3317472
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The automatic feature extraction capability of deep learning has led to its extensive usage in fault diagnosis applications. In engineering scenarios where the distribution between training and test sets is inconsistent, deep domain adaptation (DA) methods are commonly used to solve cross-domain fault diagnosis problems. Despite achieving good performance for cross-domain diagnosis, there are some limitations to DA models. First, most existing research has only focused on domain alignment between source and target domains while neglecting class information, which can result in incorrect alignment between classes of the two domains. Second, target samples that are distributed close to the boundaries of the clusters are easily misclassified by the classification decision boundary learned from the source domain. To address these issues, joint discriminative adversarial DA (JDADA) is proposed in this article. The proposed method combines domain alignment and class alignment by introducing a class alignment module into the domain adversarial network. Furthermore, the discriminative discrepancy module is proposed to compact features of the same class and separate features of different classes to extract more discriminative features. In addition, we propose a new pseudolabeling strategy to address the problem of target training samples without labels. The proposed method is evaluated on the gearbox dataset and bearing dataset, and the results demonstrate its effectiveness and superiority over state-of-the-art DA methods. Specifically, JDADA achieves up to 5.0% accuracy improvement on the gearbox dataset and 3.4% accuracy improvement on the bearing dataset.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] JDMAN: Joint Discriminative and Mutual Adaptation Networks for Cross-Domain Facial Expression Recognition
    Li, Yingjian
    Gao, Yingnan
    Chen, Bingzhi
    Zhang, Zheng
    Zhu, Lei
    Lu, Guangming
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3312 - 3320
  • [32] Cross-Domain Machinery Fault Diagnosis Using Adversarial Network with Conditional Alignments
    Xu, Nan-Xi
    Li, Xiang
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [33] Cross-domain Recommendation via Dual Adversarial Adaptation
    Su, Hongzu
    Li, Jingjing
    Du, Zhekai
    Zhu, Lei
    Lu, Ke
    Shen, Heng Tao
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (03)
  • [34] Discriminative adversarial domain generalization with meta-learning based cross-domain validation
    Chen, Keyu
    Zhuang, Di
    Chang, J. Morris
    NEUROCOMPUTING, 2022, 467 : 418 - 426
  • [35] Cross-domain fault diagnosis method for rolling bearings based on contrastive universal domain adaptation
    Kang, Shouqiang
    Tang, Xi
    Wang, Yujing
    Wang, Qingyan
    Xie, Jinbao
    ISA TRANSACTIONS, 2024, 146 : 195 - 207
  • [36] Cross-Domain Open Set Fault Diagnosis Based on Weighted Domain Adaptation with Double Classifiers
    Wang, Huaqing
    Xu, Zhitao
    Tong, Xingwei
    Song, Liuyang
    SENSORS, 2023, 23 (04)
  • [37] A novel meta-learning network with adversarial domain-adaptation and attention mechanism for cross-domain for train bearing fault diagnosis
    Zhong, Hao
    He, Deqiang
    Wei, Zexian
    Jin, Zhenzhen
    Lao, Zhenpeng
    Xiang, Zaiyu
    Shan, Sheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [38] Multi-Domain Weighted Transfer Adversarial Network for the Cross-Domain Intelligent Fault Diagnosis of Bearings
    Wang, Yuanfei
    Li, Shihao
    Jia, Feng
    Shen, Jianjun
    MACHINES, 2022, 10 (05)
  • [39] Universal source-free domain adaptation method for cross-domain fault diagnosis of machines
    Zhang, Yongchao
    Ren, Zhaohui
    Feng, Ke
    Yu, Kun
    Beer, Michael
    Liu, Zheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 191
  • [40] An enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machinery
    Zhongwei Zhang
    Mingyu Shao
    Chicheng Ma
    Zhe Lv
    Jilei Zhou
    Nonlinear Dynamics, 2022, 108 : 2385 - 2404