Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis

被引:6
|
作者
Sun, Kai [1 ]
Xu, Xinghan [2 ]
Lu, Nannan [3 ]
Xia, Huijuan [1 ]
Han, Min [4 ,5 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Fac Infrastruct Engn, Dalian 116024, Peoples R China
[3] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
[4] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equipm, Minist Educ, Dalian 116024, Peoples R China
[5] Dalian Univ Technol, Profess Technol Innovat Ctr Distributed Control In, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial domain adaptation (DA); cross-domain fault diagnosis; discriminative features learning; joint alignment; NETWORK;
D O I
10.1109/TIM.2023.3317472
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The automatic feature extraction capability of deep learning has led to its extensive usage in fault diagnosis applications. In engineering scenarios where the distribution between training and test sets is inconsistent, deep domain adaptation (DA) methods are commonly used to solve cross-domain fault diagnosis problems. Despite achieving good performance for cross-domain diagnosis, there are some limitations to DA models. First, most existing research has only focused on domain alignment between source and target domains while neglecting class information, which can result in incorrect alignment between classes of the two domains. Second, target samples that are distributed close to the boundaries of the clusters are easily misclassified by the classification decision boundary learned from the source domain. To address these issues, joint discriminative adversarial DA (JDADA) is proposed in this article. The proposed method combines domain alignment and class alignment by introducing a class alignment module into the domain adversarial network. Furthermore, the discriminative discrepancy module is proposed to compact features of the same class and separate features of different classes to extract more discriminative features. In addition, we propose a new pseudolabeling strategy to address the problem of target training samples without labels. The proposed method is evaluated on the gearbox dataset and bearing dataset, and the results demonstrate its effectiveness and superiority over state-of-the-art DA methods. Specifically, JDADA achieves up to 5.0% accuracy improvement on the gearbox dataset and 3.4% accuracy improvement on the bearing dataset.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Self-supervised bi-classifier adversarial transfer network for cross-domain fault diagnosis of rotating machinery
    Kuang, Jiachen
    Xu, Guanghua
    Tao, Tangfei
    Zhang, Sicong
    ISA TRANSACTIONS, 2022, 130 : 433 - 448
  • [32] Cross-domain policy adaptation with dynamics alignment
    Gui, Haiyuan
    Pang, Shanchen
    Yu, Shihang
    Qiao, Sibo
    Qi, Yufeng
    He, Xiao
    Wang, Min
    Zhai, Xue
    NEURAL NETWORKS, 2023, 167 : 104 - 117
  • [33] A New Universal Cross-Domain Bearing Fault Diagnosis Framework With Dynamic Distribution Adaptation Guided by Metric Learning
    Cao, Ximing
    Yang, Ruifeng
    Guo, Chenxia
    Wang, Shichao
    IEEE SENSORS JOURNAL, 2024, 24 (23) : 40038 - 40048
  • [34] Self-supervised learning-based dual-classifier domain adaptation model for rolling bearings cross-domain fault diagnosis
    Jiang, Quansheng
    Lin, Xiaoshan
    Lu, Xingchi
    Shen, Yehu
    Zhu, Qixin
    Zhang, Qingkui
    KNOWLEDGE-BASED SYSTEMS, 2024, 284
  • [35] Pre-Processing Method to Improve Cross-Domain Fault Diagnosis for Bearing
    Kim, Taeyun
    Chai, Jangbom
    SENSORS, 2021, 21 (15)
  • [36] Fault-Prototypical Adapted Network for Cross-Domain Industrial Intelligent Diagnosis
    Chai, Zheng
    Zhao, Chunhui
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (04) : 3649 - 3658
  • [37] Correlation Regularized Conditional Adversarial Adaptation for Multi-Target-Domain Fault Diagnosis
    Deng, Minqiang
    Deng, Aidong
    Shi, Yaowei
    Xu, Meng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (12) : 8692 - 8702
  • [38] A lightweight and robust model for engineering cross-domain fault diagnosis via feature fusion-based unsupervised adversarial learning
    Chen, Qitong
    Chen, Liang
    Li, Qi
    Shi, Juanjuan
    Zhu, Zhongkui
    Shen, Changqing
    MEASUREMENT, 2022, 205
  • [39] A Domain-Adversarial Multi-Graph Convolutional Network for Unsupervised Domain Adaptation Rolling Bearing Fault Diagnosis
    Li, Xinran
    Jin, Wuyin
    Xu, Xiangyang
    Yang, Hao
    SYMMETRY-BASEL, 2022, 14 (12):
  • [40] Modified DSAN for unsupervised cross-domain fault diagnosis of bearing under speed fluctuation
    Luo, Jingjie
    Shao, Haidong
    Cao, Hongru
    Chen, Xingkai
    Cai, Baoping
    Liu, Bin
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 65 : 180 - 191