Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis

被引:6
|
作者
Sun, Kai [1 ]
Xu, Xinghan [2 ]
Lu, Nannan [3 ]
Xia, Huijuan [1 ]
Han, Min [4 ,5 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Fac Infrastruct Engn, Dalian 116024, Peoples R China
[3] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
[4] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equipm, Minist Educ, Dalian 116024, Peoples R China
[5] Dalian Univ Technol, Profess Technol Innovat Ctr Distributed Control In, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial domain adaptation (DA); cross-domain fault diagnosis; discriminative features learning; joint alignment; NETWORK;
D O I
10.1109/TIM.2023.3317472
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The automatic feature extraction capability of deep learning has led to its extensive usage in fault diagnosis applications. In engineering scenarios where the distribution between training and test sets is inconsistent, deep domain adaptation (DA) methods are commonly used to solve cross-domain fault diagnosis problems. Despite achieving good performance for cross-domain diagnosis, there are some limitations to DA models. First, most existing research has only focused on domain alignment between source and target domains while neglecting class information, which can result in incorrect alignment between classes of the two domains. Second, target samples that are distributed close to the boundaries of the clusters are easily misclassified by the classification decision boundary learned from the source domain. To address these issues, joint discriminative adversarial DA (JDADA) is proposed in this article. The proposed method combines domain alignment and class alignment by introducing a class alignment module into the domain adversarial network. Furthermore, the discriminative discrepancy module is proposed to compact features of the same class and separate features of different classes to extract more discriminative features. In addition, we propose a new pseudolabeling strategy to address the problem of target training samples without labels. The proposed method is evaluated on the gearbox dataset and bearing dataset, and the results demonstrate its effectiveness and superiority over state-of-the-art DA methods. Specifically, JDADA achieves up to 5.0% accuracy improvement on the gearbox dataset and 3.4% accuracy improvement on the bearing dataset.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Double-level discriminative domain adaptation network for cross-domain fault diagnosis
    Li, Yufeng
    Xu, Xinghan
    Hu, Lei
    Sun, Kai
    Han, Min
    APPLIED INTELLIGENCE, 2025, 55 (05)
  • [2] Adversarial Domain Adaptation With Dual Auxiliary Classifiers for Cross-Domain Open-Set Intelligent Fault Diagnosis
    Wang, Bo
    Zhang, Meng
    Xu, Hao
    Wang, Chao
    Yang, Wenglong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [3] Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
    Chao, Ko-Chieh
    Chou, Chuan-Bi
    Lee, Ching-Hung
    SENSORS, 2022, 22 (12)
  • [4] Globally Localized Multisource Domain Adaptation for Cross-Domain Fault Diagnosis With Category Shift
    Feng, Yong
    Chen, Jinglong
    He, Shuilong
    Pan, Tongyang
    Zhou, Zitong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (06) : 3082 - 3096
  • [5] A Compressed Unsupervised Deep Domain Adaptation Model for Efficient Cross-Domain Fault Diagnosis
    Xu, Gaowei
    Huang, Chenxi
    Silva, Daniel Santos da
    Albuquerque, Victor Hugo C. de
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6741 - 6749
  • [6] Dynamic Balanced Domain-Adversarial Networks for Cross-Domain Fault Diagnosis of Train Bearings
    Ren, He
    Wang, Jun
    Dai, Jun
    Zhu, Zhongkui
    Liu, Jinzhao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [7] Deep Discriminative Clustering and Structural Constraint for Cross-domain Fault Diagnosis of Rotating Machinery
    Wu, Wenbo
    Liu, Yongkui
    Zhang, Lin
    Xu, Xun
    Wang, Lihui
    MANUFACTURING LETTERS, 2023, 35 : 1072 - 1080
  • [8] Self-Supervised Learning via Domain Adaptive Adversarial Clustering for Cross-Domain Chiller Fault Diagnosis
    Han, Huazheng
    Gao, Xuejin
    Han, Huayun
    Gao, Huihui
    Qi, Yongsheng
    Jiang, Kexin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [9] A deep partial adversarial transfer learning network for cross-domain fault diagnosis of machinery
    Kuang, Jiachen
    Xu, Guanghua
    Zhang, Sicong
    Tao, Tangfei
    Wei, Fan
    Yu, Yunhui
    2022 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM-LONDON 2022, 2022, : 507 - 512
  • [10] Intelligent Fault Diagnosis With Deep Adversarial Domain Adaptation
    Wang, Yu
    Sun, Xiaojie
    Li, Jie
    Yang, Ying
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70