Almost complex structures on hyperbolic manifolds

被引:1
作者
Kotschick, D. [1 ]
机构
[1] LMU Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
关键词
Almost complex structure; Hyperbolic manifold; Characteristic number; FUNDAMENTAL-GROUPS; 4-MANIFOLDS;
D O I
10.1007/s00209-023-03346-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the existence of almost complex structures on closed hyperbolic manifolds of even dimension at least four. We prove that for n = 2 and for all odd n every hyperbolic 2n-manifold has a finite covering admitting an almost complex structure. Conjecturally this should be true for all n. For n = 4 we prove it for arithmetic manifolds.
引用
收藏
页数:8
相关论文
共 26 条
[1]  
Agol I., 2020, Characters in Low-Dimensional Topology, V760, P1
[2]  
Amoros J., 1996, MATH SURVEYS MONOGRA
[3]  
[Anonymous], 1968, Topology, DOI DOI 10.1016/0040-9383(86)90016-9
[4]   HYPERBOLIC 4-MANIFOLDS WITH PERFECT CIRCLE-VALUED MORSE FUNCTIONS [J].
Battista, Ludovico ;
Martelli, Bruno .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (04) :2597-2625
[5]  
Bergeron N, 2013, INVENT MATH, V192, P505, DOI 10.1007/s00222-012-0415-2
[6]   THE STABLE HOMOTOPY OF THE CLASSICAL GROUPS [J].
BOTT, R .
ANNALS OF MATHEMATICS, 1959, 70 (02) :313-337
[7]  
Bott R., 1958, B AM MATH SOC, V64, P87, DOI DOI 10.1090/S0002-9904-1958-10166-4
[8]  
Carlson JA, 1997, B LOND MATH SOC, V29, P98
[9]  
CARLSON JA, 1989, PUBL MATH-PARIS, P173
[10]   Compact hyperbolic 4-manifolds of small volume [J].
Conder, M ;
MacLachlan, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (08) :2469-2476