Efficient Implementation of the Vector-Valued Kernel Ridge Regression for the Uncertainty Quantification of the Scattering Parameters of a 2-GHz Low-Noise Amplifier

被引:1
|
作者
Soleimani, Nastaran [1 ]
Manfredi, Paolo [1 ]
Trinchero, Riccardo [1 ]
机构
[1] Politecn Torino, Turin, Italy
来源
2023 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION, NEMO | 2023年
关键词
Machine learning; kernel machine; vector-valued KRR; stochastic analysis; amplifiers;
D O I
10.1109/NEMO56117.2023.10202518
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on the application of an efficient implementation of the vector-valued kernel Ridge regression (KRR) to the uncertainty quantification (UQ) of the scattering parameters of a low-noise amplifier (LNA). Specifically, the performance of the proposed technique have been investigated for the statistical assessment of the mean value, variance and probability density function (PDF) of the S-11 and S-21 parameters of a 2-GHz LNA induced by 25 stochastic input parameters and compared with the corresponding reference results computed via a plain Monte Carlo (MC) simulation.
引用
收藏
页码:143 / 146
页数:4
相关论文
empty
未找到相关数据