Sliding Mode Control for a Class of Systems based on a Non-Monotonic Lyapunov Function

被引:0
|
作者
Prasun, Parijat [1 ]
Singh, Vijay Kumar [1 ]
Pandey, Vinay [1 ]
Kamal, Shyam [1 ]
Ghosh, Sandip [1 ]
Osinenko, Pavel [2 ]
Parsegov, Sergei [2 ,3 ]
机构
[1] IIT BHU, Dept Elect Engn, Varanasi, Uttar Pradesh, India
[2] Skolkovo Inst Sci & Technol, Bolshoy Blvd 30,Bldg 1, Moscow 121205, Russia
[3] Russian Acad Sci, VA Trapeznikov Inst Control Sci, Moscow, Russia
关键词
STABILITY; DESIGN; ORDER;
D O I
10.1109/MED59994.2023.10185877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article discusses the sliding mode control problem, where the reaching phase is achieved non-monotonically, and the sliding phase can be achieved either monotonically or non-monotonically. Once the reaching phase is completed, the state variables slide on the sliding manifold and then reach the equilibrium point. A practical second-order example of the ball motion model is considered to show the non-monotonic reaching phase. Simulation results verify the non-monotonic behavior of the reaching phase.
引用
收藏
页码:618 / 623
页数:6
相关论文
共 50 条
  • [41] Sliding Mode Controllers Design based on Control Lyapunov functions for uncertain LTI systems
    Estrada, Manuel A.
    Moreno, Jaime A.
    Fridman, Leonid
    IFAC PAPERSONLINE, 2023, 56 (02): : 1615 - 1620
  • [42] Fuzzy sliding mode control for a class of non-linear continuous systems
    Essounbouli, Najib
    Hamzaoui, Abdelaziz
    Zaytoon, Janan
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2006, 27 (2-3) : 174 - 182
  • [43] Modified sliding mode control using a target derivative of the Lyapunov function
    Lee, SH
    Min, KW
    Lee, YC
    ENGINEERING STRUCTURES, 2005, 27 (01) : 49 - 59
  • [44] Robust non-monotonic Lyapunov based stability and stabilization methods for continuous-time systems: Applied on bilateral teleoperation system
    Solgi, Younes
    IFAC JOURNAL OF SYSTEMS AND CONTROL, 2024, 30
  • [45] Non-fragile observer-based sliding mode control for a class of uncertain switched systems
    Liu, Yonghui
    Niu, Yugang
    Zou, Yuanyuan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (02): : 952 - 963
  • [46] Sliding mode control for induction machine based on the Lyapunov theory
    Naifar, Omar
    Boukettaya, Ghada
    Ouali, Abderrazak
    2014 11TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2014,
  • [47] Robust nonlinear controller based on control Lyapunov function and terminal sliding mode for buck converter
    Shotorbani, Amin Mohammadpour
    Babaei, Ebrahim
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2016, 29 (06) : 1055 - 1069
  • [48] Comment on 'Non-monotonic projection probabilities as a function of distinguishability'
    Ra, Young-Sik
    Tichy, Malte C.
    Lim, Hyang-Tag
    Kwon, Osung
    Mintert, Florian
    Buchleitner, Andreas
    Kim, Yoon-Ho
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [49] Non-monotonic frictional behavior in the lubricated sliding of soft patterned surfaces
    Kargar-Estahbanati, Arash
    Rallabandi, Bhargav
    SOFT MATTER, 2025, 21 (03) : 448 - 457
  • [50] New Class K∞ Function-Based Adaptive Sliding Mode Control
    Song, Jiawei
    Zuo, Zongyu
    Basin, Michael
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (12) : 7840 - 7847