Sliding Mode Control for a Class of Systems based on a Non-Monotonic Lyapunov Function

被引:0
|
作者
Prasun, Parijat [1 ]
Singh, Vijay Kumar [1 ]
Pandey, Vinay [1 ]
Kamal, Shyam [1 ]
Ghosh, Sandip [1 ]
Osinenko, Pavel [2 ]
Parsegov, Sergei [2 ,3 ]
机构
[1] IIT BHU, Dept Elect Engn, Varanasi, Uttar Pradesh, India
[2] Skolkovo Inst Sci & Technol, Bolshoy Blvd 30,Bldg 1, Moscow 121205, Russia
[3] Russian Acad Sci, VA Trapeznikov Inst Control Sci, Moscow, Russia
关键词
STABILITY; DESIGN; ORDER;
D O I
10.1109/MED59994.2023.10185877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article discusses the sliding mode control problem, where the reaching phase is achieved non-monotonically, and the sliding phase can be achieved either monotonically or non-monotonically. Once the reaching phase is completed, the state variables slide on the sliding manifold and then reach the equilibrium point. A practical second-order example of the ball motion model is considered to show the non-monotonic reaching phase. Simulation results verify the non-monotonic behavior of the reaching phase.
引用
收藏
页码:618 / 623
页数:6
相关论文
共 50 条
  • [21] On a non-monotonic ageing class based on the failure rate average
    Bhattacharyya, Dhrubasish
    Ghosh, Shyamal
    Mitra, Murari
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (14) : 4807 - 4826
  • [22] A quasi-optimal sliding mode control scheme based on control Lyapunov function
    Xu, Jian-Xin
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (04): : 1445 - 1458
  • [23] Sliding mode control for a class of non-affine nonlinear systems
    Tombul, G. Serdar
    Banks, Stephen P.
    Akturk, Nizami
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1589 - E1597
  • [24] Generalized non-monotonic Lyapunov functions for analysis and synthesis of Takagi-Sugeno fuzzy systems
    Coutinho, Pedro H. S.
    Peixoto, Marcia L. C.
    Lacerda, Marcio J.
    Bernal, Miguel
    Palhares, Reinaldo M.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 4147 - 4158
  • [25] Urgency is a non-monotonic function of pulse rate
    Russo, Frank A.
    Jones, Jeffery A.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2007, 122 (05): : EL185 - EL190
  • [26] Non-monotonic projection probabilities as a function of distinguishability
    Bjork, Gunnar
    Shabbir, Saroosh
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [27] Backstepping Control for a Class of Uncertain Systems Based on Non-singular Terminal Sliding Mode
    Min Jianqing
    Xu Zibin
    2009 INTERNATIONAL CONFERENCE ON INDUSTRIAL MECHATRONICS AND AUTOMATION, 2009, : 169 - +
  • [28] Nonlinear Dynamic Periodic Event-Triggered Control with Robustness to Packet Loss Based on Non-Monotonic Lyapunov Functions
    Hertneck, Michael
    Linsenmayer, Steffen
    Allgoewer, Frank
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 1680 - 1685
  • [29] Fast Second-Order Sliding Mode Control design based on Lyapunov function
    Cruz-Zavala, Emmanuel
    Moreno, Jaime A.
    Fridman, Leonid
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2858 - 2863
  • [30] Stability notions and Lyapunov functions for sliding mode control systems
    Polyakov, Andrey
    Fridman, Leonid
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (04): : 1831 - 1865