Mass transfer analysis of the isochoric-isotherm hydrate-based water desalination from CO2/C3H8 gas mixtures

被引:0
作者
Naseh, M. [1 ]
Falamaki, C. [1 ,2 ]
Mohebbi, V. [3 ]
机构
[1] Amirkabir Univ Technol, Chem Engn Dept, Mahshahr Campus, Mahshahr 415, Iran
[2] Amirkabir Univ Technol, Chem Engn Dept, POB 158754413, Tehran, Iran
[3] Petr Univ Technol, Gas Engn Dept, Ahvaz 63431, Iran
基金
英国科研创新办公室;
关键词
Gas hydrate; Desalination; Mass transfer coefficient ratio; Modeling; Molar content in hydrate phase; Competition in cage hydrate occupancy; CLATHRATE HYDRATE; METHANE HYDRATE; FORMATION TEMPERATURE; MOLECULAR-DYNAMICS; CARBON-DIOXIDE; GROWTH; PREDICTION; REMOVAL; ETHANE; INHIBITION;
D O I
10.1007/s13762-023-05140-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The purpose of this study is to investigate the composition of the gas, liquid and hydrate phases during gas hydrate formation. The kinetics of gas hydrate formation from a CO2/C3H8 gas mixture (initial molar ratio 80/20) under isochoric and isothermal (2, 4 and 6 & DEG;C) conditions from pure and saline water has been investigated. Experimental measurement of gas composition was performed by gas chromatography and that of the liquid phase by conductivity analysis. The main and novel finding of the present study is that at early times, the gas hydrate is supersaturated with CO2, following an equilibrium concentration of CO2 and C3H8 molecules at later times. Initially, the occupancy of the 5(12)6(4) cages of the SII structure by the CO2 molecules exceeds the equilibrium plateau. A gradual egress of CO2 to the liquid/gas phase occurs afterward, eventually resulting in the decrease in CO2 and increase in C3H8 apparent mass transfer coefficients.
引用
收藏
页码:11149 / 11164
页数:16
相关论文
共 47 条
[1]   Modeling of phase transition sI-sII in binary gas hydrates of methane and ethane in dependence on composition of gas phase [J].
Adamova, T. P. ;
Subbotin, O. S. ;
Pomeransky, A. A. ;
Belosludov, V. R. .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (04) :S317-S321
[2]   The link between the kinetics of gas hydrate formation and surface ion distribution in the low salt concentration regime [J].
Asadi, Fariba ;
Ejtemaei, Majid ;
Birkett, Greg ;
Searles, Debra J. ;
Nguyen, Anh V. .
FUEL, 2019, 240 (309-316) :309-316
[3]   A Review of Clathrate Hydrate Based Desalination To Strengthen Energy-Water Nexus [J].
Babu, Ponnivalavan ;
Nambiar, Abhishek ;
He, Tianbiao ;
Karimi, Iftekhar A. ;
Lee, Ju Dong ;
Englezos, Peter ;
Linga, Praveen .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (07) :8093-8107
[4]   STATE OF CRYSTALLIZATION PROCESSES FOR DESALTING SALINE WATERS [J].
BARDUHN, AJ .
DESALINATION, 1968, 5 (02) :173-&
[5]   THE PROPERTIES OF SOME NEW GAS HYDRATES AND THEIR USE IN DEMINERALIZING SEA WATER [J].
BARDUHN, AJ ;
TOWLSON, HE ;
HU, YC .
AICHE JOURNAL, 1962, 8 (02) :176-183
[6]   DESALINATION IN PILOT SCALE COLUMN CRYSTALLIZERS [J].
BATES, C ;
GLADWIN, RP ;
MCGRATH, L .
DESALINATION, 1977, 21 (01) :83-97
[7]   Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests [J].
Cha, Jong-Ho ;
Seol, Yongkoo .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2013, 1 (10) :1218-1224
[8]   Direct measurement of methane hydrate composition along the hydrate equilibrium boundary [J].
Circone, S ;
Kirby, SH ;
Stern, LA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (19) :9468-9475
[9]   Effect of subcooling and amount of hydrate former on formation of cyclopentane hydrates in brine [J].
Corak, Djurdjica ;
Barth, Tanja ;
Hoiland, Sylvi ;
Skodvin, Tore ;
Larsen, Roar ;
Skjetne, Tore .
DESALINATION, 2011, 278 (1-3) :268-274
[10]   Surface Transformation of Methane-Ethane sI and sII Clathrate Hydrates [J].
Dec, Steven F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (17) :9660-9665