Redox regulation in diabetic kidney disease

被引:8
作者
Daehn, Ilse S. [1 ]
Ekperikpe, Ubong S. [2 ]
Stadler, Krisztian [3 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Med, Div Nephrol, New York, NY USA
[2] Univ Mississippi, Med Ctr, Dept Pharmacol & Toxicol, Jackson, MS USA
[3] Pennington Biomed Res Ctr, Oxidat Stress & Dis Lab, Baton Rouge, LA 70808 USA
基金
美国国家卫生研究院;
关键词
diabetic kidney disease; oxidative stress; reactive species; redox; NITRIC-OXIDE SYNTHASE; POLY(ADP-RIBOSE) POLYMERASE ACTIVATION; RENAL LIPID-METABOLISM; GLOMERULAR MESANGIAL CELLS; REACTIVE OXYGEN; OXIDATIVE STRESS; INSULIN-RESISTANCE; HIGH-GLUCOSE; MITOCHONDRIAL SUPEROXIDE; XANTHINE OXIDOREDUCTASE;
D O I
10.1152/ajprenal.00047.2023
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Diabetic kidney disease (DKD) is one of the most devastating complications of diabetes mellitus, where currently there is no cure available. Several important mechanisms contribute to the pathogenesis of this complication, with oxidative stress being one of the key factors. The past decades have seen a large number of publications with various aspects of this topic; however, the specific details of redox regulation in DKD are still unclear. This is partly because redox biology is very complex, coupled with a complex and heterogeneous organ with numerous cell types. Furthermore, often times terms such as "oxidative stress" or reactive oxygen species are used as a general term to cover a wide and rich variety of reactive species and their differing reactions. However, no reactive species are the same, and not all of them are capable of biologically relevant reactions or "redox signaling." The goal of this review is to provide a biochemical background for an array of specific reactive oxygen species types with varying reactivity and specificity in the kidney as well as highlight some of the advances in redox biology that are paving the way to a better understanding of DKD development and risk.
引用
收藏
页码:F135 / F149
页数:15
相关论文
共 188 条
[1]   Diabetic Kidney Disease Challenges, Progress, and Possibilities [J].
Alicic, Radica Z. ;
Rooney, Michele T. ;
Tuttle, Katherine R. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2017, 12 (12) :2032-2045
[2]   Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats [J].
Aliciguzel, Y ;
Ozen, I ;
Aslan, M ;
Karayalcin, U .
JOURNAL OF LABORATORY AND CLINICAL MEDICINE, 2003, 142 (03) :172-177
[3]   CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease [J].
Anders, Hans-Joachim ;
Huber, Tobias B. ;
Isermann, Berend ;
Schiffer, Mario .
NATURE REVIEWS NEPHROLOGY, 2018, 14 (06) :361-377
[4]   Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans [J].
Anderson, Ethan J. ;
Lustig, Mary E. ;
Boyle, Kristen E. ;
Woodlief, Tracey L. ;
Kane, Daniel A. ;
Lin, Chien-Te ;
Price, Jesse W., III ;
Kang, Li ;
Rabinovitch, Peter S. ;
Szeto, Hazel H. ;
Houmard, Joseph A. ;
Cortright, Ronald N. ;
Wasserman, David H. ;
Neufer, P. Darrell .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (03) :573-581
[5]   Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice [J].
Angeli, Jose Pedro Friedmann ;
Schneider, Manuela ;
Proneth, Bettina ;
Tyurina, Yulia Y. ;
Tyurin, Vladimir A. ;
Hammond, Victoria J. ;
Herbach, Nadja ;
Aichler, Michaela ;
Walch, Axel ;
Eggenhofer, Elke ;
Basavarajappa, Devaraj ;
Radmark, Olof ;
Kobayashi, Sho ;
Seibt, Tobias ;
Beck, Heike ;
Neff, Frauke ;
Esposito, Irene ;
Wanke, Ruediger ;
Foerster, Heidi ;
Yefremova, Olena ;
Heinrichmeyer, Marc ;
Bornkamm, Georg W. ;
Geissler, Edward K. ;
Thomas, Stephen B. ;
Stockwell, Brent R. ;
O'Donnell, Valerie B. ;
Kagan, Valerian E. ;
Schick, Joel A. ;
Conrad, Marcus .
NATURE CELL BIOLOGY, 2014, 16 (12) :1180-U120
[6]  
[Anonymous], 2004, Diabetes Care, V27, ps79, DOI [10.2337/diacare.27.2007.579, DOI 10.2337/DIACARE.27.2007.579, 10.2337/diacare.27.2007.S79]
[7]   Molecular mechanisms in the pathogenesis of diabetic nephropathy: An update [J].
Arora, Mandeep Kumar ;
Singh, Umesh Kumar .
VASCULAR PHARMACOLOGY, 2013, 58 (04) :259-271
[8]   METABOLIC SUBSTRATE UTILIZATION BY RABBIT PROXIMAL TUBULE - AN NADH FLUORESCENCE STUDY [J].
BALABAN, RS ;
MANDEL, LJ .
AMERICAN JOURNAL OF PHYSIOLOGY, 1988, 254 (03) :F407-F416
[9]   Arginine, arginine analogs and nitric oxide production in chronic kidney disease [J].
Baylis, C .
NATURE CLINICAL PRACTICE NEPHROLOGY, 2006, 2 (04) :209-220
[10]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313