Artificial intelligence and laboratory data in rheumatic diseases

被引:5
作者
Galozzi, Paola [1 ,3 ]
Basso, Daniela [1 ,2 ]
Plebani, Mario [1 ,2 ]
Padoan, Andrea [1 ,2 ]
机构
[1] Univ Padua, Dept Med DIMED, Padua, Italy
[2] Univ Hosp Padova, Lab Med Unit, Padua, Italy
[3] Univ Padua, Dept Med DIMED, Lab Med Unit, Via Giustiniani 2, I-35128 Padua, Italy
关键词
Artificial intelligence; Machine learning; Laboratory data; Rheumatic diseases;
D O I
10.1016/j.cca.2023.117388
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Artificial intelligence (AI)-based medical technologies are rapidly evolving into actionable solutions for clinical practice. Machine learning (ML) algorithms can process increasing amounts of laboratory data such as gene expression immunophenotyping data and biomarkers. In recent years, the analysis of ML has become particularly useful for the study of complex chronic diseases, such as rheumatic diseases, heterogenous conditions with multiple triggers. Numerous studies have used ML to classify patients and improve diagnosis, to stratify the risk and determine disease subtypes, as well as to discover biomarkers and gene signatures. This review aims to provide examples of ML models for specific rheumatic diseases using laboratory data and some insights into relevant strengths and limitations. A better understanding and future application of these analytical strategies could facilitate the development of precision medicine for rheumatic patients.
引用
收藏
页数:12
相关论文
共 81 条
[1]   Improvement of MEFV gene variants classification to aid treatment decision making in familial Mediterranean fever [J].
Accetturo, Matteo ;
D'Uggento, Angela Maria ;
Portincasa, Piero ;
Stella, Alessandro .
RHEUMATOLOGY, 2020, 59 (04) :754-761
[2]   Determining the origin of different variants associated with familial mediterranean fever by machine-learning [J].
Adato, Orit ;
Brenner, Ronen ;
Levy, Avi ;
Shinar, Yael ;
Shemer, Asaf ;
Dvir, Shalem ;
Ben-Zvi, Ilan ;
Livneh, Avi ;
Unger, Ron ;
Kivity, Shaye .
SCIENTIFIC REPORTS, 2022, 12 (01)
[3]   Novel risk genes for systemic lupus erythematosus predicted by random forest classification [J].
Almlof, Jonas Carlsson ;
Alexsson, Andrei ;
Imgenberg-Kreuz, Juliana ;
Sylwan, Lina ;
Backlin, Christofer ;
Leonard, Dag ;
Nordmark, Gunnel ;
Tandre, Karolina ;
Eloranta, Maija-Leena ;
Padyukov, Leonid ;
Bengtsson, Christine ;
Jonsen, Andreas ;
Dahlqvist, Solbritt Rantapaa ;
Sjowall, Christopher ;
Bengtsson, Anders A. ;
Gunnarsson, Iva ;
Svenungsson, Elisabet ;
Ronnblom, Lars ;
Sandling, Johanna K. ;
Syvanen, Ann-Christine .
SCIENTIFIC REPORTS, 2017, 7
[4]   Improving risk-stratification of rheumatoid arthritis patients for interstitial lung disease [J].
Avouac, Jerome ;
Cauvet, Anne ;
Steelandt, Alexia ;
Shirai, Yuichiro ;
Elhai, Muriel ;
Kuwana, Masataka ;
Distler, Oliver ;
Allanore, Yannick .
PLOS ONE, 2020, 15 (05)
[5]   Sample-Size Determination Methodologies for Machine Learning in Medical Imaging Research: A Systematic Review [J].
Balki, Indranil ;
Amirabadi, Afsaneh ;
Levman, Jacob ;
Martel, Anne L. ;
Emersic, Ziga ;
Meden, Blaz ;
Garcia-Pedrero, Angel ;
Ramirez, Saul C. ;
Kong, Dehan ;
Moody, Alan R. ;
Tyrrell, Pascal N. .
CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2019, 70 (04) :344-353
[6]   A survey on Artificial Intelligence and Big Data utilisation in Italian clinical laboratories [J].
Bellini, Claudia ;
Padoan, Andrea ;
Carobene, Anna ;
Guerranti, Roberto .
CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2022, 60 (12) :2017-2026
[7]   Digital health, big data and smart technologies for the care of patients with systemic autoimmune diseases: Where do we stand? [J].
Bergier, Hugo ;
Duron, Loic ;
Sordet, Christelle ;
Kawka, Lou ;
Schlencker, Aurelien ;
Chasset, Francois ;
Arnaud, Laurent .
AUTOIMMUNITY REVIEWS, 2021, 20 (08)
[8]   Artificial intelligence and the future of radiographic scoring in rheumatoid arthritis: a viewpoint [J].
Bird, Alix ;
Oakden-Rayner, Lauren ;
McMaster, Christopher ;
Smith, Luke A. ;
Zeng, Minyan ;
Wechalekar, Mihir D. ;
Ray, Shonket ;
Proudman, Susanna ;
Palmer, Lyle J. .
ARTHRITIS RESEARCH & THERAPY, 2022, 24 (01)
[9]   Supervised machine learning and logistic regression identifies novel epistatic risk factors with PTPN22 for rheumatoid arthritis [J].
Briggs, F. B. S. ;
Ramsay, P. P. ;
Madden, E. ;
Norris, J. M. ;
Holers, V. M. ;
Mikuls, T. R. ;
Sokka, T. ;
Seldin, M. F. ;
Gregersen, P. K. ;
Criswell, L. A. ;
Barcellos, L. F. .
GENES AND IMMUNITY, 2010, 11 (03) :199-208
[10]   Window of opportunity in rheumatoid arthritis - definitions and supporting evidence: from old to new perspectives [J].
Burgers, Leonie E. ;
Raza, Karim ;
van der Helm-van Mil, Annette H. .
RMD OPEN, 2019, 5 (01) :V