On the least eccentricity eigenvalue of graphs

被引:4
作者
Li, Jianping [1 ]
Qiu, Leshi [1 ]
Zhang, Jianbin [2 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510090, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
关键词
Eccentricity matrix; Least eccentricity eigenvalue; Distance matrix; MATRIX; SPECTRA;
D O I
10.1016/j.dam.2023.03.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a connected graph G with vertex set V(G), the distance matrix of G is the matrix D(G) = (dG(u, v))u,vEV(G), and the eccentricity matrix of G is defined as the matrix constructed from the distance matrix of G by keeping for each row and each column the largest entries and setting all other entries to be zero, where dG(u, v) denotes the distance between u and v in G. The eccentricity eigenvalues of G are the eigenvalues of the eccentricity matrix. By interlacing theorem, the least eccentricity eigenvalue of a graph with diameter d is at most -d. We show that this bound is achieved for d > 3 if and only if the graph is an antipodal graph with equal diameter and radius, which solves an open problem proposed in Wang et al. (2020). Then we determine all n-vertex unicyclic graphs and bicyclic graphs that maximize the least eccentricity eigenvalue, respectively.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 55
页数:9
相关论文
共 20 条
[1]   An extended eigenvalue-free interval for the eccentricity matrix of threshold graphs [J].
Andelic, Milica ;
da Fonseca, Carlos M. ;
Koledin, Tamara ;
Stanic, Zoran .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) :491-503
[2]   Distance spectra of graphs: A survey [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 :301-386
[3]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[4]   On the largest and least eigenvalues of eccentricity matrix of trees [J].
He, Xiaocong ;
Lu, Lu .
DISCRETE MATHEMATICS, 2022, 345 (01)
[5]   Spectral determination of graphs with one positive anti-adjacency eigenvalue [J].
Lei, Xingyu ;
Wang, Jianfeng .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 422
[6]   On the eigenvalues of eccentricity matrix of graphs [J].
Lei, Xingyu ;
Wang, Jianfeng ;
Li, Guozheng .
DISCRETE APPLIED MATHEMATICS, 2021, 295 :134-147
[7]   Proof of a conjecture on the ε-spectral radius of trees [J].
Li, Jianping ;
Qiu, Leshi ;
Zhang, Jianbin .
AIMS MATHEMATICS, 2023, 8 (02) :4363-4371
[8]   On the spectral radius and the energy of eccentricity matrices of graphs [J].
Mahato, Iswar ;
Gurusamy, R. ;
Kannan, M. Rajesh ;
Arockiaraj, S. .
LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (01) :5-15
[9]   Spectra of eccentricity matrices of graphs [J].
Mahato, Iswar ;
Gurusamy, R. ;
Kannan, M. Rajesh ;
Arockiaraj, S. .
DISCRETE APPLIED MATHEMATICS, 2020, 285 :252-260
[10]  
Minc H., 1988, NONNEGATIVE MATRICES