CLASSIFYING CELL CYCLE BY ELECTRICAL PROPERTIES USING MACHINE LEARNING

被引:0
作者
Wei, Jian [1 ]
Xing, Xiaoxing [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
来源
2023 IEEE 36TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS | 2023年
关键词
cell cycle; machine learning; electrical characteristics; classification; CYTOMETRY;
D O I
10.1109/MEMS49605.2023.10052482
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mitotic cell proliferation undergoes precisely controlled functional phases and results in two daughter cells divided from one parental cell. Some drugs interact with cell proliferation progression and lead to mitosis arrest at a certain phase, or cell death eventually. Combination of machine learning with impedance flow cytometry (IFC), an efficient tool for high-speed and label-free single cell analysis, allows linking of the cell physiology states post drug treatment with impedance data in a more accurate and convenient fashion. This work presents the use of different models of machine learning for classifying cell states, i.e. mitotic arrest at G1/S or G2/M phases and apoptosis, from the impedance data measured for drug-treated cells using microfluidic IFC chip.
引用
收藏
页码:1076 / 1079
页数:4
相关论文
共 14 条
[1]   Toward point-of-care assessment of patient response: a portable tool for rapidly assessing cancer drug efficacy using multifrequency impedance cytometry and supervised machine learning [J].
Ahuja, Karan ;
Rather, Gulam M. ;
Lin, Zhongtian ;
Sui, Jianye ;
Xie, Pengfei ;
Le, Tuan ;
Bertino, Joseph R. ;
Javanmard, Mehdi .
MICROSYSTEMS & NANOENGINEERING, 2019, 5 (1)
[2]   Deciphering impedance cytometry signals with neural networks [J].
Caselli, Federica ;
Reale, Riccardo ;
De Ninno, Adele ;
Spencer, Daniel ;
Morgan, Hywel ;
Bisegna, Paolo .
LAB ON A CHIP, 2022, 22 (09) :1714-1722
[3]   Electro-Optical Classification of Pollen Grains via Microfluidics and Machine Learning [J].
DaOrazio, Michele ;
Reale, Riccardo ;
De Ninno, Adele ;
Brighetti, Maria A. ;
Mencattini, Arianna ;
Businaro, Luca ;
Martinelli, Eugenio ;
Bisegna, Paolo ;
Travaglini, Alessandro ;
Caselli, Federica .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (02) :921-931
[4]   High-throughput label-free characterization of viable, necrotic and apoptotic human lymphoma cells in a coplanar-electrode microfluidic impedance chip [J].
De Ninno, Adele ;
Reale, Riccardo ;
Giovinazzo, Alessandro ;
Bertani, Francesca R. ;
Businaro, Luca ;
Bisegna, Paolo ;
Matteucci, Claudia ;
Caselli, Federica .
BIOSENSORS & BIOELECTRONICS, 2020, 150
[5]   Neural network-enhanced real-time impedance flow cytometry for single-cell intrinsic characterization [J].
Feng, Yongxiang ;
Cheng, Zhen ;
Chai, Huichao ;
He, Weihua ;
Huang, Liang ;
Wang, Wenhui .
LAB ON A CHIP, 2022, 22 (02) :240-249
[6]   A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement [J].
Feng, Yongxiang ;
Huang, Liang ;
Zhao, Peng ;
Liang, Fei ;
Wang, Wenhui .
ANALYTICAL CHEMISTRY, 2019, 91 (23) :15204-15212
[7]   3D cell electrorotation and imaging for measuring multiple cellular biophysical properties [J].
Huang, Liang ;
Zhao, Peng ;
Wang, Wenhui .
LAB ON A CHIP, 2018, 18 (16) :2359-2368
[8]   Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities [J].
Mueller, Susann ;
Nebe-von-Caron, Gerhard .
FEMS MICROBIOLOGY REVIEWS, 2010, 34 (04) :554-587
[9]   TAXOL STABILIZES MICROTUBULES IN MOUSE FIBROBLAST CELLS [J].
SCHIFF, PB ;
HORWITZ, SB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (03) :1561-1565
[10]  
SHERLEY JL, 1988, J BIOL CHEM, V263, P8350