Human Genome Polymorphisms and Computational Intelligence Approach Revealed a Complex Genomic Signature for COVID-19 Severity in Brazilian Patients

被引:2
作者
Pastor, Andre Filipe [1 ,2 ]
Docena, Cassia [3 ]
Rezende, Antonio Mauro [4 ]
da Silva Oliveira, Flavio Rosendo [5 ]
Sena, Marilia de Albuquerque [6 ]
Lins de Morais, Clarice Neuenschwander [6 ]
Bresani-Salvi, Cristiane Campello [6 ]
Silva Vasconcelos, Luydson Richardson [7 ]
Campelo Valenca, Kennya Danielle [6 ]
Mariz, Carolline de Araujo [7 ]
Brito, Carlos [8 ]
Fonseca, Claudio Duarte [9 ]
Braga, Cynthia [7 ]
de Souza Reis, Christian Robson [4 ]
de Azevedo Marques, Ernesto Torres [6 ,10 ]
Acioli-Santos, Bartolomeu [6 ]
机构
[1] Sertao Pernambucano Fed Inst Educ Sci & Technol, BR-56316686 Petrolina, PE, Brazil
[2] Icahn Sch Med Mt Sinai, Dept Microbiol, New York, NY 10029 USA
[3] Fundacao Oswaldo Cruz, Core Facil, BR-50740465 Recife, PE, Brazil
[4] Fundacao Oswaldo Cruz, Aggeu Magalhaes Inst, Dept Microbiol, BR-50740465 Recife, PE, Brazil
[5] Fed Inst Educ Sci & Technol Pernambuco, BR-50740545 Recife, PE, Brazil
[6] Fundacao Oswaldo Cruz, Aggeu Magalhaes Inst, Dept Virol, BR-50740465 Recife, PE, Brazil
[7] Fundacao Oswaldo Cruz, Aggeu Magalhaes Inst, Dept Parasitol, BR-50740465 Recife, PE, Brazil
[8] Pernambuco Fed Univ, Dept Clin Med, BR-50740600 Recife, PE, Brazil
[9] Servidores Estado Hosp HSE, BR-52020020 Recife, PE, Brazil
[10] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Infect Dis & Microbiol, Pittsburgh, PA 15261 USA
来源
VIRUSES-BASEL | 2023年 / 15卷 / 03期
关键词
COVID-19; genetics; SARS-CoV-2; infection; complex genomic classifier; machine learning; IMMUNE-RESPONSE; GENE; INFECTION; INNATE; CELLS; SIGN;
D O I
10.3390/v15030645
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We present a genome polymorphisms/machine learning approach for severe COVID-19 prognosis. Ninety-six Brazilian severe COVID-19 patients and controls were genotyped for 296 innate immunity loci. Our model used a feature selection algorithm, namely recursive feature elimination coupled with a support vector machine, to find the optimal loci classification subset, followed by a support vector machine with the linear kernel (SVM-LK) to classify patients into the severe COVID-19 group. The best features that were selected by the SVM-RFE method included 12 SNPs in 12 genes: PD-L1, PD-L2, IL10RA, JAK2, STAT1, IFIT1, IFIH1, DC-SIGNR, IFNB1, IRAK4, IRF1, and IL10. During the COVID-19 prognosis step by SVM-LK, the metrics were: 85% accuracy, 80% sensitivity, and 90% specificity. In comparison, univariate analysis under the 12 selected SNPs showed some highlights for individual variant alleles that represented risk (PD-L1 and IFIT1) or protection (JAK2 and IFIH1). Variant genotypes carrying risk effects were represented by PD-L2 and IFIT1 genes. The proposed complex classification method can be used to identify individuals who are at a high risk of developing severe COVID-19 outcomes even in uninfected conditions, which is a disruptive concept in COVID-19 prognosis. Our results suggest that the genetic context is an important factor in the development of severe COVID-19.
引用
收藏
页数:15
相关论文
共 63 条
[1]   Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review [J].
Adamidi, Eleni S. ;
Mitsis, Konstantinos ;
Nikita, Konstantina S. .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :2833-2850
[2]   Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks [J].
Asteris, Panagiotis G. ;
Gavriilaki, Eleni ;
Touloumenidou, Tasoula ;
Koravou, Evaggelia-Evdoxia ;
Koutra, Maria ;
Papayanni, Penelope Georgia ;
Pouleres, Alexandros ;
Karali, Vassiliki ;
Lemonis, Minas E. ;
Mamou, Anna ;
Skentou, Athanasia D. ;
Papalexandri, Apostolia ;
Varelas, Christos ;
Chatzopoulou, Fani ;
Chatzidimitriou, Maria ;
Chatzidimitriou, Dimitrios ;
Veleni, Anastasia ;
Rapti, Evdoxia ;
Kioumis, Ioannis ;
Kaimakamis, Evaggelos ;
Bitzani, Milly ;
Boumpas, Dimitrios ;
Tsantes, Argyris ;
Sotiropoulos, Damianos ;
Papadopoulou, Anastasia ;
Kalantzis, Ioannis G. ;
Vallianatou, Lydia A. ;
Armaghani, Danial J. ;
Cavaleri, Liborio ;
Gandomi, Amir H. ;
Hajihassani, Mohsen ;
Hasanipanah, Mahdi ;
Koopialipoor, Mohammadreza ;
Lourenco, Paulo B. ;
Samui, Pijush ;
Zhou, Jian ;
Sakellari, Ioanna ;
Valsami, Serena ;
Politou, Marianna ;
Kokoris, Styliani ;
Anagnostopoulos, Achilles .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2022, 26 (05) :1445-1455
[3]   A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection [J].
Bashirova, AA ;
Geijtenbeek, TBH ;
van Duijnhoven, GCF ;
van Vliet, SJ ;
Eilering, JBG ;
Martin, MP ;
Wu, L ;
Martin, TD ;
Viebig, N ;
Knolle, PA ;
KewalRamani, VN ;
van Kooyk, Y ;
Carrington, M .
JOURNAL OF EXPERIMENTAL MEDICINE, 2001, 193 (06) :671-678
[4]   ACE2gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population [J].
Benetti, Elisa ;
Tita, Rossella ;
Spiga, Ottavia ;
Ciolfi, Andrea ;
Birolo, Giovanni ;
Bruselles, Alessandro ;
Doddato, Gabriella ;
Giliberti, Annarita ;
Marconi, Caterina ;
Musacchia, Francesco ;
Pippucci, Tommaso ;
Torella, Annalaura ;
Trezza, Alfonso ;
Valentino, Floriana ;
Baldassarri, Margherita ;
Brusco, Alfredo ;
Asselta, Rosanna ;
Bruttini, Mirella ;
Furini, Simone ;
Seri, Marco ;
Nigro, Vincenzo ;
Matullo, Giuseppe ;
Tartaglia, Marco ;
Mari, Francesca ;
Renieri, Alessandra ;
Pinto, Anna Maria .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (11) :1602-1614
[5]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[6]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[7]  
Breiman L, 1983, CLASSIFICATION REGRE
[8]   Blockade of programmed death-1 Ligands on dendritic cells enhances T cell activation and cytokine production [J].
Brown, JA ;
Dorfman, DM ;
Ma, FR ;
Sullivan, EL ;
Munoz, O ;
Wood, CR ;
Greenfield, EA ;
Freeman, GJ .
JOURNAL OF IMMUNOLOGY, 2003, 170 (03) :1257-1266
[9]   Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis [J].
Buitrago-Garcia, Diana ;
Egli-Gany, Dianne ;
Counotte, Michel J. ;
Hossmann, Stefanie ;
Imeri, Hira ;
Ipekci, Aziz Mert ;
Salanti, Georgia ;
Low, Nicola .
PLOS MEDICINE, 2020, 17 (09)
[10]  
Carey Alison J, 2012, JAKSTAT, V1, P159, DOI 10.4161/jkst.19918