Lithium Batteries and the Solid Electrolyte Interphase (SEI)-Progress and Outlook

被引:405
作者
Adenusi, Henry [1 ]
Chass, Gregory A. [2 ,3 ,4 ]
Passerini, Stefano [5 ,6 ,7 ]
Tian, Kun V. [3 ,4 ,8 ]
Chen, Guanhua [1 ,9 ]
机构
[1] Hong Kong Quantum AI Lab, 17 Sci Pk West Ave, Hong Kong, Peoples R China
[2] Queen Mary Univ London, Sch Phys & Chem Sci, Dept Chem, London E1, England
[3] McMaster Univ, Dept Chem & Biol Chem, Hamilton, ON L8S 4L8, Canada
[4] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada
[5] Sapienza Univ Rome, Dept Chem, I-00185 Rome, Italy
[6] Helmholtz Inst Ulm, Helmholtzstr 11, D-89081 Ulm, Germany
[7] Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany
[8] Sapienza Univ Rome, Dept Chem & Chem Sci Pharm, I-00185 Rome, Italy
[9] Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
基金
欧盟地平线“2020”; 加拿大自然科学与工程研究理事会;
关键词
Helmholtz double layer; lithium metal batteries; lithium-ion batteries; solid electrolyte interphases; Stern Helmholtz layer; RAY PHOTOELECTRON-SPECTROSCOPY; SURFACE-FILM FORMATION; LI-ION BATTERIES; CARBONATE-PROPYLENE CARBONATE; ORIENTED PYROLYTIC-GRAPHITE; ATOMIC-FORCE MICROSCOPY; IN-SITU; ETHYLENE CARBONATE; MOLECULAR-DYNAMICS; METAL ANODES;
D O I
10.1002/aenm.202203307
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interfacial dynamics within chemical systems such as electron and ion transport processes have relevance in the rational optimization of electrochemical energy storage materials and devices. Evolving the understanding of fundamental electrochemistry at interfaces would also help in the understanding of relevant phenomena in biological, microbial, pharmaceutical, electronic, and photonic systems. In lithium-ion batteries, the electrochemical instability of the electrolyte and its ensuing reactive decomposition proceeds at the anode surface within the Helmholtz double layer resulting in a buildup of the reductive products, forming the solid electrolyte interphase (SEI). This review summarizes relevant aspects of the SEI including formation, composition, dynamic structure, and reaction mechanisms, focusing primarily on the graphite anode with insights into the lithium metal anode. Furthermore, the influence of the electrolyte and electrode materials on SEI structure and properties is discussed. An update is also presented on state-of-the-art approaches to quantitatively characterize the structure and changing properties of the SEI. Lastly, a framework evaluating the standing problems and future research directions including feasible computational, machine learning, and experimental approaches are outlined.
引用
收藏
页数:23
相关论文
共 297 条
[1]   Safety focused modeling of lithium-ion batteries: A review [J].
Abada, S. ;
Marlair, G. ;
Lecocq, A. ;
Petit, M. ;
Sauvant-Moynot, V. ;
Huet, F. .
JOURNAL OF POWER SOURCES, 2016, 306 :178-192
[2]   Lithium Ion Battery Anode Aging Mechanisms [J].
Agubra, Victor ;
Fergus, Jeffrey .
MATERIALS, 2013, 6 (04) :1310-1325
[3]   The formation and stability of the solid electrolyte interface on the graphite anode [J].
Agubra, Victor A. ;
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2014, 268 :153-162
[4]   Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes [J].
Ahmad, Zeeshan ;
Xie, Tian ;
Maheshwari, Chinmay ;
Grossman, Jeffrey C. ;
Viswanathan, Venkatasubramanian .
ACS CENTRAL SCIENCE, 2018, 4 (08) :996-1006
[5]   A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+ [J].
Amici, Julia ;
Asinari, Pietro ;
Ayerbe, Elixabete ;
Barboux, Philippe ;
Bayle-Guillemaud, Pascale ;
Behm, R. Juergen ;
Berecibar, Maitane ;
Berg, Erik ;
Bhowmik, Arghya ;
Bodoardo, Silvia ;
Castelli, Ivano E. ;
Cekic-Laskovic, Isidora ;
Christensen, Rune ;
Clark, Simon ;
Diehm, Ralf ;
Dominko, Robert ;
Fichtner, Maximilian ;
Franco, Alejandro A. ;
Grimaud, Alexis ;
Guillet, Nicolas ;
Hahlin, Maria ;
Hartmann, Sarah ;
Heiries, Vincent ;
Hermansson, Kersti ;
Heuer, Andreas ;
Jana, Saibal ;
Jabbour, Lara ;
Kallo, Josef ;
Latz, Arnulf ;
Lorrmann, Henning ;
Lovvik, Ole Martin ;
Lyonnard, Sandrine ;
Meeus, Marcel ;
Paillard, Elie ;
Perraud, Simon ;
Placke, Tobias ;
Punckt, Christian ;
Raccurt, Olivier ;
Ruhland, Janna ;
Sheridan, Edel ;
Stein, Helge ;
Tarascon, Jean-Marie ;
Trapp, Victor ;
Vegge, Tejs ;
Weil, Marcel ;
Wenzel, Wolfgang ;
Winter, Martin ;
Wolf, Andreas ;
Edstrom, Kristina .
ADVANCED ENERGY MATERIALS, 2022, 12 (17)
[6]   The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Mohanty, Debasish ;
Nagpure, Shrikant ;
Wood, David L., III .
CARBON, 2016, 105 :52-76
[7]   Chemical composition and morphology of the elevated temperature SEI on graphite [J].
Andersson, AM ;
Edström, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1100-A1109
[8]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[9]   Accelerating Battery Characterization Using Neutron and Synchrotron Techniques: Toward a Multi-Modal and Multi-Scale Standardized Experimental Workflow [J].
Atkins, Duncan ;
Capria, Ennio ;
Edstrom, Kristina ;
Famprikis, Theodosios ;
Grimaud, Alexis ;
Jacquet, Quentin ;
Johnson, Mark ;
Matic, Aleksandar ;
Norby, Poul ;
Reichert, Harald ;
Rueff, Jean-Pascal ;
Villevieille, Claire ;
Wagemaker, Marnix ;
Lyonnard, Sandrine .
ADVANCED ENERGY MATERIALS, 2022, 12 (17)
[10]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86