Reverse osmosis (RO) membrane has been widely used in various water treatment fields as an efficient desali-nation technology, but serious biofouling problem arises in the actual application process. Curcumin is known as a natural compound that can reduce biofouling by inhibiting the growth of microorganisms based on quorum sensing. Dopamine, a molecule with excellent adhesion and functionalization on the material's surface, has high research value for applying a curcumin coating to the membrane surface. Curcumin degrades under alkaline conditions, whereas dopamine must polymerize under alkaline conditions. Simultaneously, a coating may adversely affect curcumin. Therefore, a two-step coating process was considered by self-polymerizing dopamine on the thin-film composite membrane surface and then dip-coating curcumin attached to the polydopamine layer. Furthermore, the effect of time and concentration on the surface modification before and after membrane modification was investigated. The highest permeability of 1.39 L/m2/hr/bar was achieved with the modified membranes. The number of gram-positive bacteria decreased from 6.71 x 106 to 9.67 x 105 CFU/mL. This result is meaningful for antifouling through modification of the membrane surface. Use of curcumin can be applied to reduce biofouling and extend the lifetime of the membrane without pretreatment or membrane cleaning.
机构:
Helmholtz Zentrum Berlin Mat & Energie GmbH Metho, D-12489 Berlin, GermanyVictoria Univ, Inst Sustainabil & Innovat, Hoppers Lane, Werribee, Vic 3030, Australia
机构:
Univ Hong Kong, Dept Civil Engn, Hong Kong 999077, Peoples R China
Univ Hong Kong, Mat Innovat Inst Life Sci & Energy MILES, Shenzhen Inst Res & Innovat HKU SIRI, Shenzhen 518055, Peoples R ChinaJiangnan Univ, Sch Environm & Ecol, Jiangsu Key Lab Anaerob Biotechnol, Wuxi 214122, Peoples R China