Information fusion via symbolic regression: A tutorial in the context of human health

被引:5
作者
Schnur, Jennifer J. [1 ]
Chawla, Nitesh, V [1 ]
机构
[1] Univ Notre Dame, Lucy Family Inst Data, Dept Comp Sci & Engn, Soc, Notre Dame, IN 46556 USA
关键词
Symbolic regression; Interpretable modeling; Information fusion; Machine learning; Mathematical representation; BODY-MASS INDEX; OBESITY; FAT;
D O I
10.1016/j.inffus.2022.11.030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This tutorial paper provides a general overview of symbolic regression (SR) with specific focus on standards of interpretability. We posit that interpretable modeling, although its definition is still disputed in the literature, is a practical way to support the evaluation of successful information fusion. In order to convey the benefits of SR as a modeling technique, we demonstrate an application within the field of health and nutrition using publicly available National Health and Nutrition Examination Survey (NHANES) data from the Centers for Disease Control and Prevention (CDC), fusing together anthropometric markers into a simple mathematical expression to estimate body fat percentage. We discuss the advantages and challenges associated with SR modeling and provide qualitative and quantitative analyses of the learned models.
引用
收藏
页码:326 / 335
页数:10
相关论文
共 89 条
[1]  
Abzu, 2022, FEYN SOFTW
[2]  
[Anonymous], 2017, Classification and regression trees, DOI [10.1201/9781315139470-8, DOI 10.1201/9781315139470-8]
[3]  
[Anonymous], 2022, About Adult BMI
[4]   Multiple Regression Genetic Programming [J].
Arnaldo, Ignacio ;
Krawiec, Krzysztof ;
O'Reilly, Una-May .
GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, :879-886
[5]   Building Predictive Models via Feature Synthesis [J].
Arnaldo, Ignacio ;
O'Reilly, Una-May ;
Veeramachaneni, Kalyan .
GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, :983-990
[6]  
Bibal A, 2016, ESANN 2016 P EUR S A, P77
[7]  
Bleuler S, 2001, IEEE C EVOL COMPUTAT, P536, DOI 10.1109/CEC.2001.934438
[8]  
Brolos K, 2021, Arxiv, DOI [arXiv:2104.05417, DOI 10.48550/ARXIV.2104.05417, 10.48550/arXiv.2104.05417]
[9]  
Burlacu Bogdan, 2020, GECCO'20. Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, P1562, DOI 10.1145/3377929.3398099
[10]  
Cavalab, 2022, SRBENCH