Data-Driven Chance Constrained Programs over Wasserstein Balls

被引:60
作者
Chen, Zhi [1 ]
Kuhn, Daniel [2 ]
Wiesemann, Wolfram [3 ]
机构
[1] City Univ Hong Kong, Coll Business, Dept Management Sci, Kowloon Tong, Hong Kong, Peoples R China
[2] Ecole Polytech Fed Lausann, Risk Analyt & Optimizat Chair, CH-1015 Lausanne, Switzerland
[3] Imperial Coll London, Imperial Coll Business Sch, South Kensington Campus, London SW7 2AZ, England
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
distributionally robust optimization; ambiguous chance constraints; Wasserstein distance; DISTRIBUTIONALLY ROBUST OPTIMIZATION;
D O I
10.1287/opre.2022.2330
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We provide an exact deterministic reformulation for data-driven, chanceconstrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand-side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the 1-norm or the ???-norm, the cone is the nonnegative orthant, and the chance-constrained program can be reformulated as a mixed-integer linear program. Our reformulation compares favorably to several state-of-the-art data-driven optimization schemes in our numerical experiments.
引用
收藏
页码:410 / 424
页数:16
相关论文
共 38 条
[11]  
Gao R, 2017, PREPRINT
[12]  
Gao R., 2016, Distributionally robust stochastic optimization withWasserstein distance, DOI [DOI 10.48550/ARXIV.1604.02199, arXiv:1604.02199v2]
[13]   The Distributionally Robust Chance-Constrained Vehicle Routing Problem [J].
Ghosal, Shubhechyya ;
Wiesemann, Wolfram .
OPERATIONS RESEARCH, 2020, 68 (03) :716-732
[14]   Distributionally Robust Optimization and Its Tractable Approximations [J].
Goh, Joel ;
Sim, Melvyn .
OPERATIONS RESEARCH, 2010, 58 (04) :902-917
[15]   The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty [J].
Gounaris, Chrysanthos E. ;
Wiesemann, Wolfram ;
Floudas, Christodoulos A. .
OPERATIONS RESEARCH, 2013, 61 (03) :677-693
[16]  
Ho-Nguyen N, 2020, PREPRINT
[17]   Distributionally robust chance-constrained programs with right-hand side uncertainty under Wasserstein ambiguity [J].
Ho-Nguyen, Nam ;
Kilinc-Karzan, Fatma ;
Kucukyavuz, Simge ;
Lee, Dabeen .
MATHEMATICAL PROGRAMMING, 2022, 196 (1-2) :641-672
[18]  
Hu Z., 2013, Kullback-Leibler divergence constrained distributionally robust optimization, V1, P1695
[19]   Risk-Averse Two-Stage Stochastic Program with Distributional Ambiguity [J].
Jiang, Ruiwei ;
Guan, Yongpei .
OPERATIONS RESEARCH, 2018, 66 (05) :1390-1405
[20]   Data-driven chance constrained stochastic program [J].
Jiang, Ruiwei ;
Guan, Yongpei .
MATHEMATICAL PROGRAMMING, 2016, 158 (1-2) :291-327