Data-Driven Chance Constrained Programs over Wasserstein Balls

被引:60
作者
Chen, Zhi [1 ]
Kuhn, Daniel [2 ]
Wiesemann, Wolfram [3 ]
机构
[1] City Univ Hong Kong, Coll Business, Dept Management Sci, Kowloon Tong, Hong Kong, Peoples R China
[2] Ecole Polytech Fed Lausann, Risk Analyt & Optimizat Chair, CH-1015 Lausanne, Switzerland
[3] Imperial Coll London, Imperial Coll Business Sch, South Kensington Campus, London SW7 2AZ, England
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
distributionally robust optimization; ambiguous chance constraints; Wasserstein distance; DISTRIBUTIONALLY ROBUST OPTIMIZATION;
D O I
10.1287/opre.2022.2330
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We provide an exact deterministic reformulation for data-driven, chanceconstrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand-side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the 1-norm or the ???-norm, the cone is the nonnegative orthant, and the chance-constrained program can be reformulated as a mixed-integer linear program. Our reformulation compares favorably to several state-of-the-art data-driven optimization schemes in our numerical experiments.
引用
收藏
页码:410 / 424
页数:16
相关论文
共 38 条
[1]   Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: An exact and physically-bounded formulation [J].
Arrigo, Adriano ;
Ordoudis, Christos ;
Kazempour, Jalal ;
De Greve, Zacharie ;
Toubeau, Jean-Francois ;
Vallee, Francois .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 296 (01) :304-322
[2]  
Ben-Tal A., 2001, LECT MODERN CONVEX O
[3]   A branch and bound method for stochastic integer problems under probabilistic constraints [J].
Beraldi, P ;
Ruszczynski, A .
OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (03) :359-382
[4]   ROBUST WASSERSTEIN PROFILE INFERENCE AND APPLICATIONS TO MACHINE LEARNING [J].
Blanchet, Jose ;
Kang, Yang ;
Murthy, Karthyek .
JOURNAL OF APPLIED PROBABILITY, 2019, 56 (03) :830-857
[5]   Quantifying Distributional Model Risk via Optimal Transport [J].
Blanchet, Jose ;
Murthy, Karthyek .
MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (02) :565-600
[6]   Wasserstein Distance and the Distributionally Robust TSP [J].
Carlsson, John Gunnar ;
Behroozi, Mehdi ;
Mihic, Kresimir .
OPERATIONS RESEARCH, 2018, 66 (06) :1603-1624
[7]   Sharing the value-at-risk under distributional ambiguity [J].
Chen, Zhi ;
Xie, Weijun .
MATHEMATICAL FINANCE, 2021, 31 (01) :531-559
[8]   Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems [J].
Delage, Erick ;
Ye, Yinyu .
OPERATIONS RESEARCH, 2010, 58 (03) :595-612
[9]   Optimal guaranteed return portfolios and the casino effect [J].
Dert, C ;
Oldenkamp, B .
OPERATIONS RESEARCH, 2000, 48 (05) :768-775
[10]   Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations [J].
Esfahani, Peyman Mohajerin ;
Kuhn, Daniel .
MATHEMATICAL PROGRAMMING, 2018, 171 (1-2) :115-166