Optimality conditions and sensitivity analysis in parametric nonconvex minimax programming

被引:2
作者
An, D. T. V. [1 ]
Hung, N. H. [2 ]
Ngoan, D. T. [3 ]
Tuyen, N. V. [2 ]
机构
[1] Thai Nguyen Univ Sci, Dept Math & Informat, Thai Nguyen 250000, Vietnam
[2] Hanoi Pedag Univ 2, Dept Math, Phuc Yen, Vinh Phuc, Vietnam
[3] Hanoi Univ Nat Resources & Environm, Dept Basic Sci, Hanoi 11916, Vietnam
关键词
Parametric nonconvex minimax programming; Metric qualification condition; Subdifferentiation of maximum functions; Optimality conditions; Optimal value function; Mordukhovich subdifferentials; SUBDIFFERENTIAL CALCULUS; OPTIMIZATION PROBLEMS; GEOMETRIC APPROACH; METRIC REGULARITY;
D O I
10.1007/s10898-024-01388-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we perform optimality conditions and sensitivity analysis for parametric nonconvex minimax programming problems. Our aim is to study the necessary optimality conditions by using the Mordukhovich (limiting) subdifferential and to give upper estimations for the Mordukhovich subdifferential of the optimal value function in the problem under consideration. The optimality conditions and sensitivity analysis are obtained by using upper estimates for Mordukhovich subdifferentials of the maximum function. The results on optimality conditions are then applied to parametric multiobjective optimization problems. An example is given to illustrate our results.
引用
收藏
页码:53 / 72
页数:20
相关论文
共 32 条
[1]   Differential stability of convex optimization problems under inclusion constraints [J].
An, D. T. V. ;
Yen, N. D. .
APPLICABLE ANALYSIS, 2015, 94 (01) :108-128
[2]   Subdifferentials of the Marginal Functions in Parametric Convex Optimization via Intersection Formulas [J].
An, Duong Thi Viet ;
Jourani, Abderrahim .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 192 (01) :82-96
[3]   Necessary optimality conditions for minimax programming problems with mathematical constraints [J].
Bao, Truong Q. ;
Gupta, Pankaj ;
Khanh, Phan Q. .
OPTIMIZATION, 2017, 66 (11) :1755-1776
[4]  
BONNANS J, 2000, PERTURBATION ANAL OP, DOI DOI 10.1007/978-1-4612-1394-9
[5]   GENERALIZED FRACTIONAL-PROGRAMMING DUALITY - A RATIO GAME APPROACH [J].
CHANDRA, S ;
CRAVEN, BD ;
MOND, B .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 28 :170-180
[6]  
Darkhovskii B. S., 1976, Cybernetics, V12, P553, DOI 10.1007/BF01070390
[7]  
DEMYANOV VF, 1990, INTRO MINIMAX
[8]   Sensitivity Analysis of the Maximal Value Function with Applications in Nonconvex Minimax Programs [J].
Guo, Lei ;
Ye, Jane J. ;
Zhang, Jin .
MATHEMATICS OF OPERATIONS RESEARCH, 2024, 49 (01) :536-556
[9]   Minimax programming as a tool for studying robust multi-objective optimization problems [J].
Hong, Zhe ;
Bae, Kwan Deok ;
Kim, Do Sang .
ANNALS OF OPERATIONS RESEARCH, 2022, 319 (02) :1589-1606
[10]   Subdifferentials of optimal value functions under metric qualification conditions [J].
Huong, Vu Thi ;
An, Duong Thi Viet ;
Xu, Hong-Kun .
JOURNAL OF GLOBAL OPTIMIZATION, 2024, 88 (01) :253-283