Kresling origami-inspired electromagnetic energy harvester with reversible nonlinearity

被引:9
作者
Yin, Peilun [1 ]
Han, Hesheng [1 ,2 ]
Tang, Lihua [1 ]
Tan, Xing [1 ,3 ]
Guo, Muxuan [1 ]
Xia, Cuipeng [1 ]
Aw, Kean Chin [1 ]
机构
[1] Univ Auckland, Dept Mech & Mechatron Engn, Auckland 1010, New Zealand
[2] Sun Yat sen Univ, Sch Adv Mfg, Shenzhen 518107, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
reversible nonlinearity; electromagnetic energy harvesting; Kresling origami; monostable; equilibrium shift; broadband; VIBRATION; PERFORMANCE; MOTION;
D O I
10.1088/1361-665X/ad27fb
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper presents an electromagnetic energy harvester based on a unique nonlinear Kresling origami-inspired structure. By introducing the equilibrium shift phenomenon, reversible nonlinearity (i.e. mixed softening-hardening behavior) empowers the proposed harvester to work in a broad frequency band, confirmed by both simulation using a dynamic model and experimentation. The prototyped device can produce the open-circuit root mean square (RMS) voltage from 0.09 V to 0.20 V in the reversibly nonlinear response region in (6.19 Hz, 9.63 Hz) and a maximum output power of 0.4956 mW at an optimum load of 18.1 omega under the excitation of 1.1 g. Moreover, detailed research further reveals that the design parameters of Kresling origami-inspired structure and electrical and mechanical loads influence reversible nonlinearity. Increasing the tip mass and gamma 0 in the M2 region of the design map strengthens the softening behavior, and enlarging the electrical load enhances the hardening behavior. The findings from this work deepen the understanding of the nonlinear behavior of Kresling origami, unveils the great potential of origami structure in energy harvesting and offers a new method to realize broadband vibration energy harvesters.
引用
收藏
页数:17
相关论文
共 60 条
[1]   Evaluation of the Pavement Geothermal Energy Harvesting Technologies towards Sustainability and Renewable Energy [J].
Al-Qadami, Ebrahim Hamid Hussein ;
Mustaffa, Zahiraniza ;
Al-Atroush, Mohamed E. .
ENERGIES, 2022, 15 (03)
[2]  
Blokhina E., 2016, Nonlinearity in energy harvesting systems, microand nanoscale applications
[3]   Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern [J].
Cai Jianguo ;
Deng Xiaowei ;
Zhou Ya ;
Feng Jian ;
Tu Yongming .
JOURNAL OF MECHANICAL DESIGN, 2015, 137 (06) :1DUMMMY
[4]   Electromagnetic energy harvesting using magnetic levitation architectures: A review [J].
Carneiro, Pedro ;
Soares dos Santos, Marco P. ;
Rodrigues, Andre ;
Ferreira, Jorge A. F. ;
Simoes, Jose A. O. ;
Torres Marques, A. ;
Kholkin, Andrei L. .
APPLIED ENERGY, 2020, 260
[5]   Modeling of magnetic vibrational energy harvesters using equivalent circuit representations [J].
Cheng, Shuo ;
Wang, Naigang ;
Arnold, David P. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (11) :2328-2335
[6]   Current trends and prospects of tidal energy technology [J].
Chowdhury, M. S. ;
Rahman, Kazi Sajedur ;
Selvanathan, Vidhya ;
Nuthammachot, Narissara ;
Suklueng, Montri ;
Mostafaeipour, Ali ;
Habib, Asiful ;
Akhtaruzzaman ;
Amin, Nowshad ;
Techato, Kuaanan .
ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2021, 23 (06) :8179-8194
[7]   An H-shaped coupler energy harvester for application in heavy railways [J].
Fan, Chengliang ;
Li, Hai ;
Zhang, Zutao ;
Pan, Yajia ;
Wu, Xiaoping ;
Ahmed, Ammar .
ENERGY, 2023, 270
[8]   Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester [J].
Fan, Kangqi ;
Cai, Meiling ;
Liu, Haiyan ;
Zhang, Yiwei .
ENERGY, 2019, 169 :356-368
[9]   Dynamics of a bistable Miura-origami structure [J].
Fang, Hongbin ;
Li, Suyi ;
Ji, Huimin ;
Wang, K. W. .
PHYSICAL REVIEW E, 2017, 95 (05) :052211
[10]   An overview of the mechanical description of origami-inspired systems and structures [J].
Fonseca, Larissa M. ;
Rodrigues, Guilherme V. ;
Savi, Marcelo A. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 223