Uncertainty-aware pseudo-label filtering for source-free unsupervised domain adaptation

被引:1
|
作者
Chen, Xi [1 ]
Yang, Haosen [2 ]
Zhang, Huicong [1 ]
Yao, Hongxun [1 ]
Zhu, Xiatian [2 ]
机构
[1] Harbin Inst Technol, Fac Comp, Weihai, Peoples R China
[2] Univ Surrey, Surrey, England
基金
国家重点研发计划;
关键词
Source-free unsupervised domain adaptation; Pseudo-label filtering; Uncertainty-aware; Contrastive learning;
D O I
10.1016/j.neucom.2023.127190
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Source -free unsupervised domain adaptation (SFUDA) aims to enable the utilization of a pre -trained source model in an unlabeled target domain without access to source data. Self -training is a way to solve SFUDA, where confident target samples are iteratively selected as pseudo -labeled samples to guide target model learning. However, prior heuristic noisy pseudo -label filtering methods all involve introducing extra models, which are sensitive to model assumptions and may introduce additional errors or mislabeling. In this work, we propose a method called Uncertainty -aware Pseudo -label -filtering Adaptation (UPA) to efficiently address this issue in a coarse -to -fine manner. Specially, we first introduce a sample selection module named Adaptive Pseudo -label Selection (APS), which is responsible for filtering noisy pseudo labels. The APS utilizes a simple sample uncertainty estimation method by aggregating knowledge from neighboring samples and confident samples are selected as clean pseudo -labeled. Additionally, we incorporate Class -Aware Contrastive Learning (CACL) to mitigate the memorization of pseudo -label noise by learning robust pair -wise representation supervised by pseudo labels. Through extensive experiments conducted on three widely used benchmarks, we demonstrate that our proposed method achieves competitive performance on par with state-of-the-art SFUDA methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Self-Supervised Noisy Label Learning for Source-Free Unsupervised Domain Adaptation
    Chen, Weijie
    Lin, Luojun
    Yang, Shicai
    Xie, Di
    Pu, Shiliang
    Zhuang, Yueting
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 10185 - 10192
  • [22] Confidence Score for Source-Free Unsupervised Domain Adaptation
    Lee, Jonghyun
    Jung, Dahuin
    Yim, Junho
    Yoon, Sungroh
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [23] Local-global pseudo-label correction for source-free domain adaptive medical image segmentation
    Ye, Yanyu
    Zhang, Zhenxi
    Tian, Chunna
    Wei, Wei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 93
  • [24] Uncertainty-aware pseudo-label and consistency for semi-supervised medical image segmentation
    Lu, Liyun
    Yin, Mengxiao
    Fu, Liyao
    Yang, Feng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [25] Uncertainty-Guided Source-Free Domain Adaptation
    Roy, Subhankar
    Trapp, Martin
    Pilzer, Andrea
    Kannala, Juho
    Sebe, Nicu
    Ricci, Elisa
    Solin, Arno
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 537 - 555
  • [26] Class-Incremental Unsupervised Domain Adaptation via Pseudo-Label Distillation
    Wei, Kun
    Yang, Xu
    Xu, Zhe
    Deng, Cheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1188 - 1198
  • [27] Rethinking confidence scores for source-free unsupervised domain adaptation
    Tian Q.
    Sun C.
    Neural Computing and Applications, 2024, 36 (24) : 14951 - 14966
  • [28] Uncertainty-aware Pseudo Label Refinery for Domain Adaptive Semantic Segmentation
    Wang, Yuxi
    Peng, Junran
    Zhang, Zhaoxiang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9072 - 9081
  • [29] Source-Free Unsupervised Domain Adaptation with Sample Transport Learning
    Qing Tian
    Chuang Ma
    Feng-Yuan Zhang
    Shun Peng
    Hui Xue
    Journal of Computer Science and Technology, 2021, 36 : 606 - 616
  • [30] Concurrent Subsidiary Supervision for Unsupervised Source-Free Domain Adaptation
    Kundu, Jogendra Nath
    Bhambri, Suvaansh
    Kulkarni, Akshay
    Sarkar, Hiran
    Jampani, Varun
    Babu, R. Venkatesh
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 177 - 194