Programmable integrated photonics for topological Hamiltonians

被引:23
作者
On, Mehmet Berkay [1 ,2 ]
Ashtiani, Farshid [1 ]
Sanchez-Jacome, David [3 ]
Perez-Lopez, Daniel [3 ]
Yoo, S. J. Ben [2 ]
Blanco-Redondo, Andrea [1 ,4 ]
机构
[1] Nokia Bell Labs, 600 Mt Ave, New Providence, NJ 07974 USA
[2] Univ Calif Davis, Dept Elect & Comp Engn, One Shields Ave, Davis, CA 95616 USA
[3] iPron Programmable Photon, Ave Blasco Ibanez 25, Valencia 46010, Spain
[4] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
STATES; REALIZATION; PHASE; LIGHT;
D O I
10.1038/s41467-024-44939-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A variety of topological Hamiltonians have been demonstrated in photonic platforms, leading to fundamental discoveries and enhanced robustness in applications such as lasing, sensing, and quantum technologies. To date, each topological photonic platform implements a specific type of Hamiltonian with inexistent or limited reconfigurability. Here, we propose and demonstrate different topological models by using the same reprogrammable integrated photonics platform, consisting of a hexagonal mesh of silicon Mach-Zehnder interferometers with phase shifters. We specifically demonstrate a one-dimensional Su-Schrieffer-Heeger Hamiltonian supporting a localized topological edge mode and a higher-order topological insulator based on a two-dimensional breathing Kagome Hamiltonian with three corner states. These results highlight a nearly universal platform for topological models that may fast-track research progress toward applications of topological photonics and other coupled systems. Topological photonics could impact the scalability of integrated photonics, but it has shown limited reconfigurability to date. Here, the authors demonstrate reprogrammable integrated photonics as a nearly universal platform for topological models.
引用
收藏
页数:8
相关论文
共 56 条
[1]   Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths [J].
Arora, Sonakshi ;
Bauer, Thomas ;
Barczyk, Rene ;
Verhagen, Ewold ;
Kuipers, L. .
LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
[2]   Nonreciprocal lasing in topological cavities of arbitrary geometries [J].
Bahari, Babak ;
Ndao, Abdoulaye ;
Vallini, Felipe ;
El Amili, Abdelkrim ;
Fainman, Yeshaiahu ;
Kante, Boubacar .
SCIENCE, 2017, 358 (6363) :636-639
[3]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[4]   Topological protection of biphoton states [J].
Blanco-Redondo, Andrea ;
Bell, Bryn ;
Oren, Dikla ;
Eggleton, Benjamin J. ;
Segev, Mordechai .
SCIENCE, 2018, 362 (6414) :568-+
[5]   Topological Optical Waveguiding in Silicon and the Transition between Topological and Trivial Defect States [J].
Blanco-Redondo, Andrea ;
Andonegui, Imanol ;
Collins, Matthew J. ;
Harari, Gal ;
Lumer, Yaakov ;
Rechtsman, Mikael C. ;
Eggleton, Benjamin J. ;
Segev, Mordechai .
PHYSICAL REVIEW LETTERS, 2016, 116 (16)
[6]   Programmable photonic circuits [J].
Bogaerts, Wim ;
Perez, Daniel ;
Capmany, Jose ;
Miller, David A. B. ;
Poon, Joyce ;
Englund, Dirk ;
Morichetti, Francesco ;
Melloni, Andrea .
NATURE, 2020, 586 (7828) :207-216
[7]   Dynamically reconfigurable topological edge state in phase change photonic crystals [J].
Cao, Tun ;
Fang, Linhan ;
Cao, Ying ;
Li, Nan ;
Fan, Zhiyou ;
Tao, Zhiguo .
SCIENCE BULLETIN, 2019, 64 (12) :814-822
[8]   Symmetry-Induced Error Filtering in a Photonic Lieb Lattice [J].
Chang, Yi-Jun ;
Lu, Yong-Heng ;
Wang, Yao ;
Xu, Xiao-Yun ;
Zhou, Wen-Hao ;
Cui, Wen-Hao ;
Wang, Xiao-Wei ;
Gao, Jun ;
Qiao, Lu-Feng ;
Jin, Xian-Min .
PHYSICAL REVIEW LETTERS, 2021, 126 (11)
[9]   Direct Observation of Corner States in Second-Order Topological Photonic Crystal Slabs [J].
Chen, Xiao-Dong ;
Deng, Wei-Min ;
Shi, Fu-Long ;
Zhao, Fu-Li ;
Chen, Min ;
Dong, Jian-Wen .
PHYSICAL REVIEW LETTERS, 2019, 122 (23)
[10]  
Cheng XJ, 2016, NAT MATER, V15, P542, DOI [10.1038/nmat4573, 10.1038/NMAT4573]