Rear Surface Passivation for Ink-Based, Submicron CuIn(S, Se)2 Solar Cells

被引:0
作者
Suresh, Sunil [1 ]
Gidey, Abraha T. [1 ]
Chowdhury, Towhid H. [1 ]
Rondiya, Sachin R. [2 ]
Tao, Li [3 ]
Liu, Jian [3 ]
Vermang, Bart [4 ,5 ,6 ]
Uhl, Alexander R. [1 ]
机构
[1] Univ British Columbia, Sch Engn, Lab Solar Energy & Fuels LSEF, Kelowna, BC V1V 1V7, Canada
[2] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, India
[3] Univ British Columbia, Sch Engn, Kelowna, BC V1V 1V7, Canada
[4] Hasselt Univ, Inst Mat Res IMO, B-3590 Diepenbeek, Belgium
[5] IMEC Div IMOMEC Partner Solliance, Wetenschapspk 1, B-3590 Diepenbeek, Belgium
[6] EnergyVille, Thor Pk 8320, B-3600 Genk, Belgium
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会; 欧盟地平线“2020”;
关键词
CIS; doping; non-vacuum; passivation; photovoltaics; solar cells; thin films; EFFICIENCY; LAYER;
D O I
10.1002/aenm.202303309
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A N, N-dimethylformamide and thiourea-based route is developed to fabricate submicron (0.55 and 0.75 mu m) thick CuIn(S,Se)(2) (CISSe) thin films for photovoltaic applications, addressing challenges of material usage, throughput, and manufacturing costs. However, reducing the absorber film thickness below 1 mu m in a regular CISSe solar cell decreases the device efficiency due to losses at the highly-recombinative, and mediocre-reflective Mo/CISSe rear interface. For the first time, to mitigate the rear recombination losses, a novel rear contacting structure involving a surface passivation layer and point contact openings is developed for solution processed CISSe films and demonstrated in tangible devices. An atomic layer deposited Al2O3 film is employed to passivate the Mo/CISSe rear surface while precipitates formed via chemical bath deposition of CdS are used to generate nanosized point openings. Consequently, Al2O3 passivated CISSe solar cells show an increase in the open-circuit voltage (V-OC) and short-circuit current density when compared to reference cells with equivalent absorber thicknesses. Notably, a V-OC increase of 59 mV contributes to active area efficiencies of 14.2% for rear passivated devices with 0.75 mu m thick absorber layers, the highest reported value for submicron-based solution processed, low bandgap CISSe solar cells.
引用
收藏
页数:9
相关论文
共 34 条
  • [31] Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts
    Vermang, Bart
    Fjallstrom, Viktor
    Gao, Xindong
    Edoff, Marika
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (01): : 486 - 492
  • [32] Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts
    Vermang, Bart
    Fjallstrom, Viktor
    Pettersson, Jonas
    Salome, Pedro
    Edoff, Marika
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 117 : 505 - 511
  • [33] Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells
    Xiang, Huimin
    Liu, Pengyun
    Wang, Wei
    Ran, Ran
    Zhou, Wei
    Shao, Zongping
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 113 : 138 - 146
  • [34] Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency
    Xin, H.
    Vorpahl, S. M.
    Collord, A. D.
    Braly, I. L.
    Uhl, A. R.
    Krueger, B. W.
    Ginger, D. S.
    Hillhouse, H. W.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (37) : 23859 - 23866