Strong p-d Orbital Hybridization on Bismuth Nanosheets for High Performing CO2 Electroreduction

被引:61
作者
Cao, Xueying [1 ]
Tian, Yadong [1 ]
Ma, Jizhen [1 ]
Guo, Weijian [1 ]
Cai, Wenwen [1 ]
Zhang, Jintao [1 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
atomic doping; carbon dioxide reduction; electrocatalysis; orbital hybridization; ATOM ALLOY CATALYSTS; REDUCTION; EFFICIENT; EVOLUTION; SITES;
D O I
10.1002/adma.202309648
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom alloys (SAAs) show great potential for a variety of electrocatalytic reactions. However, the atomic orbital hybridization effect of SAAs on the electrochemical reactions is unclear yet. Herein, the in situ confinement of vanadium/molybdenum/tungsten atoms on bismuth nanosheet is shown to create SAAs with rich grain boundaries, respectively. With the detailed analysis of microstructure and composition, the strong p-d orbital hybridization between bismuth and vanadium enables the exceptional electrocatalytic performance for carbon dioxide (CO2) reduction with the Faradaic efficiency nearly 100% for C1 products in a wide potential range from -0.6 to -1.4 V, and a long-term electrolysis stability for 90 h. In-depth in situ investigations with theoretical computations reveal that the electron delocalization toward vanadium atoms via the p-d orbital hybridization evokes the bismuth active centers for efficient CO2 activation via the sigma-donation of O-to-Bi, thus reduces protonation energy barriers for formate production. With such fundamental understanding, SAA electrocatalyst is employed to fabricated the solar-driven electrolytic cell of CO2 reduction and 5-hydroxymethylfurfural oxidation, achieving an outstanding 2,5-furandicarboxylic acid yield of 90.5%. This study demonstrates a feasible strategy to rationally design advanced SAA electrocatalysts via the basic principles of p-d orbital hybridization.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Metal-Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel [J].
Cao, Changsheng ;
Ma, Dong-Dong ;
Gu, Jia-Fang ;
Xie, Xiuyuan ;
Zeng, Guang ;
Li, Xiaofang ;
Han, Shu-Guo ;
Zhu, Qi-Long ;
Wu, Xin-Tao ;
Xu, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (35) :15014-15020
[2]   In Situ Characterization for Boosting Electrocatalytic Carbon Dioxide Reduction [J].
Cao, Xueying ;
Tan, Dongxing ;
Wulan, Bari ;
Hui, K. S. ;
Hui, K. N. ;
Zhang, Jintao .
SMALL METHODS, 2021, 5 (10)
[3]   Galvanic-Cell Deposition Enables the Exposure of Bismuth Grain Boundary for Efficient Electroreduction of Carbon Dioxide [J].
Chen, Jialei ;
Chen, Shan ;
Li, Youzeng ;
Liao, Xuelong ;
Zhao, Tete ;
Cheng, Fangyi ;
Wang, Huan .
SMALL, 2022, 18 (22)
[4]   Single-Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia [J].
Chen, Kai ;
Ma, Ziyu ;
Li, Xingchuan ;
Kang, Jilong ;
Ma, Dongwei ;
Chu, Ke .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (12)
[5]   Operando Mossbauer Spectroscopic Tracking the Metastable State of Atomically Dispersed Tin in Copper Oxide for Selective CO2 Electroreduction [J].
Chen, Ruru ;
Zhao, Jian ;
Li, Yifan ;
Cui, Yi ;
Lu, Ying-Rui ;
Hung, Sung-Fu ;
Wang, Shifu ;
Wang, Weijue ;
Huo, Guodong ;
Zhao, Yang ;
Liu, Wei ;
Wang, Junhu ;
Xiao, Hai ;
Li, Xuning ;
Huang, Yanqiang ;
Liu, Bin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (37) :20683-20691
[6]   Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction [J].
Chen, Zhigang ;
Xu, Yafeng ;
Ding, Ding ;
Song, Ge ;
Gan, Xingxing ;
Li, Hao ;
Wei, Wei ;
Chen, Jian ;
Li, Zhiyun ;
Gong, Zhongmiao ;
Dong, Xiaoming ;
Zhu, Chengfeng ;
Yang, Nana ;
Ma, Jingyuan ;
Gao, Rui ;
Luo, Dan ;
Cong, Shan ;
Wang, Lu ;
Zhao, Zhigang ;
Cui, Yi .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]   Bismuth Oxides with Enhanced Bismuth-Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate [J].
Deng, Peilin ;
Wang, Hongming ;
Qi, Ruijuan ;
Zhu, Jiexin ;
Chen, Shenghua ;
Yang, Fan ;
Zhou, Liang ;
Qi, Kai ;
Liu, Hongfang ;
Xia, Bao Yu .
ACS CATALYSIS, 2020, 10 (01) :743-750
[8]   Unraveling the rate-limiting step of two-electron transfer electrochemical reduction of carbon dioxide [J].
Deng, Wanyu ;
Zhang, Peng ;
Seger, Brian ;
Gong, Jinlong .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]   Unraveling the Principles of Lattice Disorder Degree of Bi2B2O7 (B = Sn, Ti, Zr) Compounds on Activating Gas Phase O2 for Soot Combustion [J].
Feng, Xiaohui ;
Xu, Junwei ;
Xu, Xianglan ;
Zhang, Shijing ;
Ma, Jun ;
Fang, Xiuzhong ;
Wang, Xiang .
ACS CATALYSIS, 2021, 11 (19) :12112-12122
[10]   Probing the Reaction Mechanism of CO2 Electroreduction over Ag Films via Operando Infrared Spectroscopy [J].
Firet, Nienke J. ;
Smith, Wilson A. .
ACS CATALYSIS, 2017, 7 (01) :606-612