ON TRAJECTORIES OF COMPLEX-VALUED INTERIOR TRANSMISSION EIGENVALUES

被引:1
作者
Pieronek, Lukas [1 ]
Kleefeld, Andreas [2 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl & Numer Math, Engler Str 2, D-76131 Karlsruhe, Germany
[2] Forschungszentrum Julich GmbH, Julich Supercomp Ctr, Wilhelm Johnen Str, D-52425 Julich, Germany
[3] Univ Appl Sci Aachen, Fac Med Engn & Technomath, Heinrich Mussmann Str 1, D-52428 Julich, Germany
关键词
Key veords and phrases. Interior transmission problem; eigenvalue trajectories; complex-valued eigenvalues; FINITE-ELEMENT-METHOD; FAR-FIELD PATTERNS; INTEGRAL METHOD; EXISTENCE;
D O I
10.3934/ipi.2023041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper investigates the interior transmission problem for homogeneous media via eigenvalue trajectories parameterized by the magnitude of the refractive index. In the case that the scatterer is the unit disk, we prove that there is a one-to-one correspondence between complex-valued interior transmission eigenvalue trajectories and Dirichlet eigenvalues of the Laplacian which turn out to be exactly the trajectorial limit points as the refractive index tends to infinity. For general simply-connected scatterers in two or three dimensions, a corresponding relation is still open, but further theoretical results and numerical studies indicate a similar connection.
引用
收藏
页码:480 / 516
页数:37
相关论文
共 33 条
  • [1] Abramowitz M., 1964, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
  • [2] An integral method for solving nonlinear eigenvalue problems
    Beyn, Wolf-Juergen
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) : 3839 - 3863
  • [3] On vanishing and localizing of transmission eigenfunctions near singular points: a numerical study
    Blasten, Eemeli
    Li, Xiaofei
    Liu, Hongyu
    Wang, Yuliang
    [J]. INVERSE PROBLEMS, 2017, 33 (10)
  • [4] UNIFORM UPPER AND LOWER BOUNDS ON THE ZEROS OF BESSEL-FUNCTIONS OF THE FIRST KIND
    BREEN, S
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (01) : 1 - 17
  • [5] Holomorphic flows on simply connected regions have no limit cycles
    Broughan, KA
    [J]. MECCANICA, 2003, 38 (06) : 699 - 709
  • [6] THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM
    Cakoni, Fioralba
    Colton, David
    Gintides, Drossos
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) : 2912 - 2921
  • [7] THE EXISTENCE OF AN INFINITE DISCRETE SET OF TRANSMISSION EIGENVALUES
    Cakoni, Fioralba
    Gintides, Drossos
    Haddar, Houssem
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) : 237 - 255
  • [8] FAR-FIELD PATTERNS FOR ACOUSTIC-WAVES IN AN INHOMOGENEOUS-MEDIUM
    COLTON, D
    KIRSCH, A
    PAIVARINTA, L
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (06) : 1472 - 1483
  • [9] Distribution of complex transmission eigenvalues for spherically stratified media
    Colton, David
    Leung, Yuk-J
    Meng, Shixu
    [J]. INVERSE PROBLEMS, 2015, 31 (03)
  • [10] Complex eigenvalues and the inverse spectral problem for transmission eigenvalues
    Colton, David
    Leung, Yuk-J
    [J]. INVERSE PROBLEMS, 2013, 29 (10)