Compact Model Parameter Extraction using Bayesian Machine Learning

被引:1
|
作者
Bhat, Sachin [1 ]
Kulkarni, Sourabh [1 ]
Moritz, Csaba Andras [1 ]
机构
[1] Univ Massachusetts Amherst, Elect & Comp Engn Dept, Amherst, MA 01003 USA
来源
2023 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, ISVLSI | 2023年
关键词
Compact model; Parameter extraction; Bayesian optimization; Machine Learning;
D O I
10.1109/ISVLSI59464.2023.10238563
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Compact models are integral part of large-scale integrated circuit simulations and validation of new technologies. With technology scaling, however, compact models have become complex with lots of parameters involved. Hence, parameter extraction for new device technology is rather challenging. In this paper, we propose a probabilistic approach to compact model parameter extraction. We devise a Bayesian optimization technique which is specifically tailored for efficient extraction of BSIM-CMG parameters for fitting nanowire junctionless transistors and 14nm FinFETs. The Bayesian optimization based extraction results show excellent fit to drain current data, with 6.5% normalized root-mean-square error for nanowire junctionless transistors. For a 14nm FinFET, the technique achieves 6.3% and 1.5% for drain current and capacitance data, respectively. This compares favourably to current tools available as well and improves on current tools available including industrial ones.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [41] Efficient modelling of compact microstrip antenna using machine learning
    Sharma, Kanhaiya
    Pandey, Ganga Prasad
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2021, 135
  • [42] Medium Term Streamflow Prediction Based on Bayesian Model Averaging Using Multiple Machine Learning Models
    He, Feifei
    Zhang, Hairong
    Wan, Qinjuan
    Chen, Shu
    Yang, Yuqi
    WATER, 2023, 15 (08)
  • [43] Parameter Setting in SAT Solver using Machine Learning Techniques
    Beskyd, Filip
    Surynek, Pavel
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2022, : 586 - 597
  • [44] Novel Features Extraction From EEG Signals for Epilepsy Detection Using Machine Learning Model
    Pandya, Vandana
    Shukla, Urvashi P.
    Joshi, Amit M.
    IEEE SENSORS LETTERS, 2023, 7 (10)
  • [45] Machine Learning-Based Compact Model Design for Reconfigurable FETs
    Reuter, Maximilian
    Wilm, Johannes
    Kramer, Andreas
    Bhattacharjee, Niladri
    Beyer, Christoph
    Trommer, Jens
    Mikolajick, Thomas
    Hofmann, Klaus
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2024, 12 : 310 - 317
  • [46] (Machine) learning parameter regions
    Olea, Jose Luis Montiel
    Nesbit, James
    JOURNAL OF ECONOMETRICS, 2021, 222 (01) : 716 - 744
  • [47] Compact Data Learning for Machine Learning Classifications
    Kim, Song-Kyoo
    AXIOMS, 2024, 13 (03)
  • [48] Gas Source Parameter Estimation Using Machine Learning in WSNs
    Mahfouz, Sandy
    Mourad-Chehade, Farah
    Honeine, Paul
    Farah, Joumana
    Snoussi, Hichem
    IEEE SENSORS JOURNAL, 2016, 16 (14) : 5795 - 5804
  • [49] Traffic Conflict Prediction at Signal Cycle Level Using Bayesian Optimized Machine Learning Approaches
    Zheng, Lai
    Hu, Zhenlin
    Sayed, Tarek
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (05) : 183 - 195
  • [50] Advanced machine learning artificial neural network classifier for lithology identification using Bayesian optimization
    Soulaimani, Saad
    Soulaimani, Ayoub
    Abdelrahman, Kamal
    Miftah, Abdelhalim
    Fnais, Mohammed S.
    Mondal, Biraj Kanti
    FRONTIERS IN EARTH SCIENCE, 2024, 12