Compact Model Parameter Extraction using Bayesian Machine Learning

被引:1
|
作者
Bhat, Sachin [1 ]
Kulkarni, Sourabh [1 ]
Moritz, Csaba Andras [1 ]
机构
[1] Univ Massachusetts Amherst, Elect & Comp Engn Dept, Amherst, MA 01003 USA
来源
2023 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, ISVLSI | 2023年
关键词
Compact model; Parameter extraction; Bayesian optimization; Machine Learning;
D O I
10.1109/ISVLSI59464.2023.10238563
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Compact models are integral part of large-scale integrated circuit simulations and validation of new technologies. With technology scaling, however, compact models have become complex with lots of parameters involved. Hence, parameter extraction for new device technology is rather challenging. In this paper, we propose a probabilistic approach to compact model parameter extraction. We devise a Bayesian optimization technique which is specifically tailored for efficient extraction of BSIM-CMG parameters for fitting nanowire junctionless transistors and 14nm FinFETs. The Bayesian optimization based extraction results show excellent fit to drain current data, with 6.5% normalized root-mean-square error for nanowire junctionless transistors. For a 14nm FinFET, the technique achieves 6.3% and 1.5% for drain current and capacitance data, respectively. This compares favourably to current tools available as well and improves on current tools available including industrial ones.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [31] Process Aware Compact Model Parameter Extraction for 45 nm Process Flow
    Karmarkar, Aditya P.
    Dasarapu, V. K.
    Saha, A. R.
    Braun, G.
    Krishnamurthy, S.
    Lin, X. -W.
    NSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGS: MICROSYSTEMS, PHOTONICS, SENSORS, FLUIDICS, MODELING, AND SIMULATION, 2008, : 833 - +
  • [32] Risk Identification of Mountain Torrent Hazard Using Machine Learning and Bayesian Model Averaging Techniques
    Chu, Ya
    Song, Weifeng
    Chen, Dongbin
    WATER, 2024, 16 (11)
  • [33] Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization
    Kim, Dongku
    Kwon, Kibeom
    Pham, Khanh
    Oh, Ju-Young
    Choi, Hangseok
    AUTOMATION IN CONSTRUCTION, 2022, 140
  • [34] A physical compact model of DG MOSFET for mixed-signal circuit applications - Part II: Parameter extraction
    Pei, G
    Kan, ECC
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (10) : 2144 - 2153
  • [35] Finding patterns in subsurface using Bayesian machine learning approach
    Wang, Hui
    UNDERGROUND SPACE, 2020, 5 (01) : 84 - 92
  • [36] Experimentally Validated Dynamic Equivalent Circuit Model of Perovskite Solar Cells: Utilizing Machine Learning Algorithms for Parameter Extraction Using I-V and C-V Characteristics
    Sawires, Eman
    Ismail, Zahraa
    Amer, Fathy
    Abdellatif, Sameh
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [37] A Novel Paradigm for Parameter Optimization of Hydraulic Fracturing Using Machine Learning and Large Language Model
    Yang, Chunxi
    Xu, Chuanyou
    Ma, Yue
    Qu, Bang
    Liang, Yiquan
    Xu, Yajun
    Xiao, Lei
    Sheng, Zhimin
    Fan, Zhenghao
    Zhang, Xin
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (03) : 1122 - 1132
  • [38] Trends in web data extraction using machine learning
    Patnaik, Sudhir Kumar
    Babu, C. Narendra
    WEB INTELLIGENCE, 2021, 19 (03) : 169 - 190
  • [39] Bayesian Optimized Machine Learning Model for Automated Eye Disease Classification from Fundus Images
    Zannah, Tasnim Bill
    Abdulla-Hil-Kafi, Md.
    Sheakh, Md. Alif
    Hasan, Md. Zahid
    Shuva, Taslima Ferdaus
    Bhuiyan, Touhid
    Rahman, Md. Tanvir
    Khan, Risala Tasin
    Kaiser, M. Shamim
    Whaiduzzaman, Md
    COMPUTATION, 2024, 12 (09)
  • [40] Identification and Connectomic Profiling of Concussion Using Bayesian Machine Learning
    Hacker, Benjamin J.
    Imms, Phoebe E.
    Dharani, Ammar M.
    Zhu, Jessica
    Chowdhury, Nahian F.
    Chaudhari, Nikhil N.
    Irimia, Andrei
    JOURNAL OF NEUROTRAUMA, 2024, 41 (15-16) : 1883 - 1900