Compact Model Parameter Extraction using Bayesian Machine Learning

被引:1
|
作者
Bhat, Sachin [1 ]
Kulkarni, Sourabh [1 ]
Moritz, Csaba Andras [1 ]
机构
[1] Univ Massachusetts Amherst, Elect & Comp Engn Dept, Amherst, MA 01003 USA
来源
2023 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, ISVLSI | 2023年
关键词
Compact model; Parameter extraction; Bayesian optimization; Machine Learning;
D O I
10.1109/ISVLSI59464.2023.10238563
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Compact models are integral part of large-scale integrated circuit simulations and validation of new technologies. With technology scaling, however, compact models have become complex with lots of parameters involved. Hence, parameter extraction for new device technology is rather challenging. In this paper, we propose a probabilistic approach to compact model parameter extraction. We devise a Bayesian optimization technique which is specifically tailored for efficient extraction of BSIM-CMG parameters for fitting nanowire junctionless transistors and 14nm FinFETs. The Bayesian optimization based extraction results show excellent fit to drain current data, with 6.5% normalized root-mean-square error for nanowire junctionless transistors. For a 14nm FinFET, the technique achieves 6.3% and 1.5% for drain current and capacitance data, respectively. This compares favourably to current tools available as well and improves on current tools available including industrial ones.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [21] Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling
    Zhao Wanchen
    Zheng Chen
    Xiao Bin
    Liu Xing
    Liu Lu
    Yu Tongxin
    Liu Yanjie
    Dong Ziqiang
    Liu Yi
    Zhou Ce
    Wu Hongsheng
    Lu Baokun
    ACTA METALLURGICA SINICA, 2021, 57 (06) : 797 - 810
  • [22] Hyperparameter tuning of supervised bagging ensemble machine learning model using Bayesian optimization for estimating stormwater quality
    Mohammadreza Moeini
    Sustainable Water Resources Management, 2024, 10
  • [23] Optimizing data acquisition: a Bayesian approach for efficient machine learning model training
    Mahani, M. R.
    Nechepurenko, Igor A.
    Rahimof, Yasmin
    Wicht, Andreas
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [24] Hyperparameter tuning of supervised bagging ensemble machine learning model using Bayesian optimization for estimating stormwater quality
    Moeini, Mohammadreza
    SUSTAINABLE WATER RESOURCES MANAGEMENT, 2024, 10 (02)
  • [25] Prediction of tidal currents using Bayesian machine learning
    Sarkar, Dripta
    Osborne, Michael A.
    Adcock, Thomas A. A.
    OCEAN ENGINEERING, 2018, 158 : 221 - 231
  • [26] Automatic Parameter Extraction of MOSFET Compact Models using Differential Evolution with Population Prediction (DEpred)
    Alia, Gazmend
    Buzo, Andi
    Maier-Flaig, Hannes
    Pieper, Klaus-Willi
    Maurer, Linus
    Pelz, Georg
    6TH IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM 2022), 2022, : 94 - 96
  • [27] A data-driven compact drain current model for InGaAs FinFET using TCAD assisted machine learning approach
    Maity, Arya
    Maity, Subir Kumar
    Das, Himadri Sekhar
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [28] Parameter set and data sampling strategy for accurate yet efficient statistical MOSFET compact model extraction
    Bindu, B.
    Cheng, B.
    Roy, G.
    Wang, X.
    Roy, S.
    Asenov, A.
    SOLID-STATE ELECTRONICS, 2010, 54 (03) : 307 - 315
  • [29] Development of a literature informed Bayesian machine learning method for feature extraction and classification
    Behrouz Madahian
    Lih Yuan Deng
    Ramin Homayouni
    BMC Bioinformatics, 16
  • [30] VerilogAE: An Open Source Verilog-A Compiler for Compact Model Parameter Extraction
    Kuthe, Pascal
    Mueller, Markus
    Schroeter, Michael
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2020, 8 (08): : 1416 - 1423