Compact Model Parameter Extraction using Bayesian Machine Learning

被引:3
作者
Bhat, Sachin [1 ]
Kulkarni, Sourabh [1 ]
Moritz, Csaba Andras [1 ]
机构
[1] Univ Massachusetts Amherst, Elect & Comp Engn Dept, Amherst, MA 01003 USA
来源
2023 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, ISVLSI | 2023年
关键词
Compact model; Parameter extraction; Bayesian optimization; Machine Learning;
D O I
10.1109/ISVLSI59464.2023.10238563
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Compact models are integral part of large-scale integrated circuit simulations and validation of new technologies. With technology scaling, however, compact models have become complex with lots of parameters involved. Hence, parameter extraction for new device technology is rather challenging. In this paper, we propose a probabilistic approach to compact model parameter extraction. We devise a Bayesian optimization technique which is specifically tailored for efficient extraction of BSIM-CMG parameters for fitting nanowire junctionless transistors and 14nm FinFETs. The Bayesian optimization based extraction results show excellent fit to drain current data, with 6.5% normalized root-mean-square error for nanowire junctionless transistors. For a 14nm FinFET, the technique achieves 6.3% and 1.5% for drain current and capacitance data, respectively. This compares favourably to current tools available as well and improves on current tools available including industrial ones.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 11 条
[1]  
Bhat S., 2021, 2021 IEEE COMP SOC A
[2]   Junctionless Nanowire Transistor (JNT): Properties and design guidelines [J].
Colinge, J. P. ;
Kranti, A. ;
Yan, R. ;
Lee, C. W. ;
Ferain, I. ;
Yu, R. ;
Akhavan, N. Dehdashti ;
Razavi, P. .
SOLID-STATE ELECTRONICS, 2011, 65-66 :33-37
[3]  
Dunga MV, 2008, INTEGR CIRCUIT SYST, P113, DOI 10.1007/978-0-387-71752-4_3
[4]  
Frazier PI, 2018, Arxiv, DOI [arXiv:1807.02811, DOI 10.48550/ARXIV.1807.02811]
[5]   Deep Learning-Based BSIM-CMG Parameter Extraction for 10-nm FinFET [J].
Kao, Ming-Yen ;
Chavez, Fredo ;
Khandelwal, Sourabh ;
Hu, Chenming .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (08) :4765-4768
[6]  
Khandelwal S, 2015, BSIM-CMG 110.0.0: Multi-gate MOSFET compact model: Technical manual
[7]   A numerical study of limited memory BFGS methods [J].
Morales, JL .
APPLIED MATHEMATICS LETTERS, 2002, 15 (04) :481-487
[8]  
Natarajan S, 2014, INT EL DEVICES MEET
[9]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
[10]  
Ryckaert J, 2018, 2018 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, P141, DOI 10.1109/VLSIT.2018.8510618