Interpolation inequalities in generalized Orlicz-Sobolev spaces and applications

被引:0
作者
Wu, Ruimin [1 ]
Wang, Songbai [2 ]
机构
[1] Lanzhou Technol & Business Coll, Math Teaching Dept, Gansu 730101, Peoples R China
[2] Chongqing Three Gorges Univ, Coll Math & Stat, Chongqing 404130, Peoples R China
来源
OPEN MATHEMATICS | 2023年 / 21卷 / 01期
关键词
interpolation inequality; generalized Orlicz-Sobolev space; maximal function operator; FUNCTIONALS;
D O I
10.1515/math-2022-0595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m ? N and be a generalized Orlicz function. We obtained some interpolation inequalities for derivatives in generalized Orlicz-Sobolev spaces W-m,W-f(R-n). As applications, we established a compact Sobolev embedding on domain and a Landau-Kolmogorov-type inequality in generalized Orlicz spaces. And we introduced the Sobolev f-capacity and studied some of its properties.
引用
收藏
页数:14
相关论文
共 28 条
  • [1] Adams R. A., 1975, SOBOLEV SPACES
  • [2] Burenkev V. I., 1998, SOBOLEV SPACES DOMAI
  • [3] Choquet G., 1954, ANN I FOURIER, V5, P131
  • [4] EXTRAPOLATION AND INTERPOLATION IN GENERALIZED ORLICZ SPACES
    Cruz-Uribe, David
    Hasto, Peter
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (06) : 4323 - 4349
  • [5] Diening L, 2004, MATH INEQUAL APPL, V7, P245
  • [6] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [7] Federer H., 1969, GEOMETRIC MEASURE TH, V153
  • [8] Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
  • [9] Halmos P. R., 1950, Measure Theory
  • [10] Harjulehto P, 2019, Arxiv, DOI [arXiv:1910.03893, 10.48550/arXiv.1910.03893, DOI 10.48550/ARXIV.1910.03893]