A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and Gorenstein curves

被引:5
作者
Battistella, Luca [1 ]
Carocci, Francesca [2 ]
机构
[1] Humboldt Univ, Inst Math, Berlin, Germany
[2] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
GROMOV-WITTEN INVARIANTS; POINTED ELLIPTIC-CURVES; MODULAR COMPACTIFICATIONS; STABLE MAPS; SINGULARITIES; DEFORMATION; ENUMERATION; STACKS;
D O I
10.2140/gt.2023.27.1203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a modular desingularisation of (M) over bar (2,n)(P-r, d)(main). The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers; with this enhanced logarithmic structure, it is possible to desingularise the main component by means of a logarithmic modification. Both isolated and nonreduced singularities appear naturally. Our construction gives rise to a notion of reduced Gromov-Witten invariants in genus two.
引用
收藏
页码:1203 / 1272
页数:70
相关论文
共 84 条
[61]   Logarithmic geometry and algebraic stacks [J].
Olsson, MC .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (05) :747-791
[62]  
Parker K. S., 2017, THESIS U COLORADO BO
[63]  
Popa A, 2013, T AM MATH SOC, V365, P1149
[64]   Moduli of stable maps in genus one and logarithmic geometry, I [J].
Ranganathan, Dhruv ;
Santos-Parker, Keli ;
Wise, Jonathan .
GEOMETRY & TOPOLOGY, 2019, 23 (07) :3315-3366
[65]   Moduli of stable maps in genus one and logarithmic geometry, II [J].
Ranganathan, Dhruv ;
Santos-Parker, Keli ;
Wise, Jonathan .
ALGEBRA & NUMBER THEORY, 2019, 13 (08) :1765-1805
[66]   NONNORMAL DEL PEZZO SURFACES [J].
REID, M .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1994, 30 (05) :695-727
[67]  
Serre JP, 1988, Algebraic Groups and Class Fields, V117
[68]   Modular compactifications of the space of pointed elliptic curves II [J].
Smyth, David Ishii .
COMPOSITIO MATHEMATICA, 2011, 147 (06) :1843-1884
[69]   Modular compactifications of the space of pointed elliptic curves I [J].
Smyth, David Ishii .
COMPOSITIO MATHEMATICA, 2011, 147 (03) :877-913
[70]  
Speyer D E, 2005, THESIS U CALIFORNIA