A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and Gorenstein curves

被引:6
作者
Battistella, Luca [1 ]
Carocci, Francesca [2 ]
机构
[1] Humboldt Univ, Inst Math, Berlin, Germany
[2] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
GROMOV-WITTEN INVARIANTS; POINTED ELLIPTIC-CURVES; MODULAR COMPACTIFICATIONS; STABLE MAPS; SINGULARITIES; DEFORMATION; ENUMERATION; STACKS;
D O I
10.2140/gt.2023.27.1203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a modular desingularisation of (M) over bar (2,n)(P-r, d)(main). The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers; with this enhanced logarithmic structure, it is possible to desingularise the main component by means of a logarithmic modification. Both isolated and nonreduced singularities appear naturally. Our construction gives rise to a notion of reduced Gromov-Witten invariants in genus two.
引用
收藏
页码:1203 / 1272
页数:70
相关论文
共 84 条
[21]   A MODULI STACK OF TROPICAL CURVES [J].
Cavalieri, Renzo ;
Chan, Melody ;
Ulirsch, Martin ;
Wise, Jonathan .
FORUM OF MATHEMATICS SIGMA, 2020, 8
[22]   Tropicalizing the space of admissible covers [J].
Cavalieri, Renzo ;
Markwig, Hannah ;
Ranganathan, Dhruv .
MATHEMATISCHE ANNALEN, 2016, 364 (3-4) :1275-1313
[23]   Tropical hyperelliptic curves [J].
Chan, Melody .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (02) :331-359
[24]  
Chang HL, 2019, Arxiv, DOI arXiv:1810.00394
[25]   Moduli stacks of stable toric quasimaps [J].
Ciocan-Fontanine, Ionut ;
Kim, Bumsig .
ADVANCES IN MATHEMATICS, 2010, 225 (06) :3022-3051
[26]  
Coates T, 2018, Arxiv, DOI arXiv:1809.04162
[27]   Tropical geometry of genus two curves [J].
Cueto, Maria Angelica ;
Markwig, Hannah .
JOURNAL OF ALGEBRA, 2019, 517 :457-512
[28]  
DEBARRE O, 2001, UNIVERSITEX, pR5
[29]  
derWyck FDWvan, 2010, THESIS HARVARD U
[30]   Parametrisation of primitive multiple curves [J].
Drezet, Jean-Marc .
ADVANCES IN GEOMETRY, 2007, 7 (04) :559-612