A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and Gorenstein curves

被引:5
作者
Battistella, Luca [1 ]
Carocci, Francesca [2 ]
机构
[1] Humboldt Univ, Inst Math, Berlin, Germany
[2] Ecole Polytech Fed Lausanne, Inst Math, Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
GROMOV-WITTEN INVARIANTS; POINTED ELLIPTIC-CURVES; MODULAR COMPACTIFICATIONS; STABLE MAPS; SINGULARITIES; DEFORMATION; ENUMERATION; STACKS;
D O I
10.2140/gt.2023.27.1203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a modular desingularisation of (M) over bar (2,n)(P-r, d)(main). The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers; with this enhanced logarithmic structure, it is possible to desingularise the main component by means of a logarithmic modification. Both isolated and nonreduced singularities appear naturally. Our construction gives rise to a notion of reduced Gromov-Witten invariants in genus two.
引用
收藏
页码:1203 / 1272
页数:70
相关论文
共 84 条
  • [1] Twisted bundles and admissible covers
    Abramovich, D
    Corti, A
    Vistoli, A
    [J]. COMMUNICATIONS IN ALGEBRA, 2003, 31 (08) : 3547 - 3618
  • [2] Weak semistable reduction in characteristic 0
    Abramovich, D
    Karu, K
    [J]. INVENTIONES MATHEMATICAE, 2000, 139 (02) : 241 - 273
  • [3] Abramovich D, 2016, Nonarchimedean and Tropical Geometry, P287
  • [4] Birational invariance in logarithmic Gromov-Witten theory
    Abramovich, Dan
    Wise, Jonathan
    [J]. COMPOSITIO MATHEMATICA, 2018, 154 (03) : 595 - 620
  • [5] Boundedness of the space of stable logarithmic maps
    Abramovich, Dan
    Chen, Qile
    Marcus, Steffen
    Wise, Jonathan
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (09) : 2783 - 2809
  • [6] Second flip in the Hassett-Keel program: a local description
    Alper, Jarod
    Fedorchuk, Maksym
    Smyth, David Ishii
    van der Wyck, Frederick
    [J]. COMPOSITIO MATHEMATICA, 2017, 153 (08) : 1547 - 1583
  • [7] Singularities with Gm-action and the log minimal model program for (M)over-barg
    Alper, Jarod
    Fedorchuk, Maksym
    Smyth, David Ishii
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 721 : 1 - 41
  • [8] Lifting harmonic morphisms II: Tropical curves and metrized complexes
    Amini, Omid
    Baker, Matthew
    Brugalle, Erwan
    Rabinoff, Joseph
    [J]. ALGEBRA & NUMBER THEORY, 2015, 9 (02) : 267 - 315
  • [9] Bainbridge M, 2019, arXiv
  • [10] Battistella L, 2018, THESIS IMPERIAL COLL