High-Quality Lead Acetate-Based Ruddlesden-Popper Perovskite Films for Efficient Solar Cells

被引:2
作者
Xu, Yuanhuan [1 ]
Wen, Xuemiao [1 ]
Zheng, Guanhaojie [2 ]
Wang, Yufei [1 ]
Li, Yaohui [1 ]
Li, Bolun [1 ]
Yang, Yuzhao [3 ]
Liang, Jianshu [4 ,5 ]
Chen, Dongcheng [4 ,5 ]
Hou, Lintao [1 ]
Cai, Wanzhu [1 ]
Qing, Jian [1 ]
机构
[1] Jinan Univ, Dept Phys, Guangzhou Key Lab Vacuum Coating Technol & New Ene, Siyuan Lab, Guangzhou 510632, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Zhangjiang Lab, Shanghai Synchrotron Radiat Facil SSRF, Shanghai 201204, Peoples R China
[3] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
[4] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
[5] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
dimethyl sulfoxide; film quality; lead acetate; Ruddlesden-Popper perovskites; solar cells; VERTICAL ORIENTATION; PERFORMANCE; DEFECTS;
D O I
10.1002/solr.202300111
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The 2D Ruddlesden-Popper perovskites (RPPs), consisting of alternating organic spacer layers and inorganic layers, are emerging photovoltaic materials because of their highly tunable optoelectronic properties and improved stability compared to their 3D counterparts. Nonhalide lead sources attract increasing attention in 3D perovskites, whereas the lead sources for RPPs are limited to lead halides. Herein, nonhalide lead source of lead acetate is investigated for high-quality RPP films by a dimethyl sulfoxide (DMSO)-assisted delayed annealing process. The incorporation of DMSO in the lead acetate-based precursor solution regulates the crystallization process, resulting in RPP films with distinctly enhanced crystallinity, reduced trap density, vertical crystal orientation, and graded phase distribution. Consequently, the optimized RPP solar cell with an inverted planar structure delivers a champion power conversion efficiency of 17.3%. Herein, future developments of nonhalide lead sources are spurred to fabricate RPP films with high device performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Self-Assembled Molecules Fostering Ordered Spatial Heterogeneity for Efficient Ruddlesden-Popper Perovskite Solar Cells
    Guo, Wei
    Li, Jingguo
    Cen, Hanlin
    Duan, Jianing
    Yang, Yingguo
    Yang, Xiaolong
    Dong, Hua
    Wu, Zhaoxin
    Xi, Jun
    ADVANCED ENERGY MATERIALS, 2024, 14 (33)
  • [22] Highly Efficient and Stable FA-Based Quasi-2D Ruddlesden-Popper Perovskite Solar Cells by the Incorporation of β-Fluorophenylethanamine Cations
    Zhang, Yunxin
    Chen, Mingqian
    He, Tengfei
    Chen, Hongbin
    Zhang, Zhe
    Wang, Hebin
    Lu, Haolin
    Ling, Qin
    Hu, Ziyang
    Liu, Yongsheng
    Chen, Yongsheng
    Long, Guankui
    ADVANCED MATERIALS, 2023, 35 (17)
  • [23] Rapid Crystallization for Efficient 2D Ruddlesden-Popper (2DRP) Perovskite Solar Cells
    Qiu, Jian
    Zheng, Yiting
    Xia, Yingdong
    Chao, Lingfeng
    Chen, Yonghua
    Huang, Wei
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (47)
  • [24] Energetics and Energy Loss in 2D Ruddlesden-Popper Perovskite Solar Cells
    Yang, Jianming
    Xiong, Shaobing
    Song, Jingnan
    Wu, Hongbo
    Zeng, Yihan
    Lu, Linyang
    Shen, Kongchao
    Hao, Tianyu
    Ma, Zaifei
    Liu, Feng
    Duan, Chungang
    Fahlman, Mats
    Bao, Qinye
    ADVANCED ENERGY MATERIALS, 2020, 10 (23)
  • [25] Compositionally Designed 2D Ruddlesden-Popper Perovskites for Efficient and Stable Solar Cells
    Wei, Yi
    Chen, Baoquan
    Zhang, Fan
    Tian, Yuyang
    Yang, Xichuan
    Cai, Bin
    Zhao, Jijun
    SOLAR RRL, 2021, 5 (04)
  • [26] Highly Stable and Efficient Formamidinium-Based 2D Ruddlesden-Popper Perovskite Solar Cells via Lattice Manipulation
    Zeng, Fang
    Kong, Weiyu
    Liang, Yuhang
    Li, Feng
    Lvtao, Yuze
    Su, Zhenhuang
    Wang, Tao
    Peng, Bingguo
    Ye, Longfang
    Chen, Zhenhua
    Gao, Xingyu
    Huang, Jun
    Zheng, Rongkun
    Yang, Xudong
    ADVANCED MATERIALS, 2023, 35 (42)
  • [27] High-Quality α-FAPbI3 Film Assisted by Lead Acetate for Efficient Solar Cells
    Xi, Jiahao
    Wang, Hui
    Yuan, Jifeng
    Yan, Xiaoqin
    Siffalovic, Peter
    Tian, Jianjun
    SOLAR RRL, 2021, 5 (12):
  • [28] Addressing the Role of 2D Domains in High-Dimensionality Ruddlesden-Popper Perovskite for Solar Cells
    Bravetti, Gianluca
    Altamura, Davide
    Paci, Barbara
    Generosi, Amanda
    Carallo, Sonia
    Guaragno, Marco
    Gigli, Giuseppe
    Listorti, Andrea
    Grancini, Giulia
    Giannini, Cinzia
    Colella, Silvia
    Rizzo, Aurora
    SOLAR RRL, 2023, 7 (03)
  • [29] Dredging the Charge-Carrier Transfer Pathway for Efficient Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells
    Li, Pengwei
    Yan, Linfang
    Cao, Qingli
    Liang, Chao
    Zhu, He
    Peng, Sihui
    Yang, Yongpeng
    Liang, Yuncai
    Zhao, Rudai
    Zang, Shuangquan
    Zhang, Yiqiang
    Song, Yanlin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (13)
  • [30] Improve the Charge Carrier Transporting in Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells
    Dong, Xue
    Li, Xin
    Wang, Xiaobo
    Zhao, Yuzhen
    Song, Wenqi
    Wang, Fangmin
    Xu, Shudong
    Miao, Zongcheng
    Wu, Zhongbin
    ADVANCED MATERIALS, 2024, 36 (19)