Smith-Purcell Radiation from Highly Mobile Carriers in 2D Quantum Materials

被引:6
作者
Lu, Shengyuan [1 ]
Nussupbekov, Ayan [1 ,2 ]
Xiong, Xiao [1 ]
Ding, Wen Jun [1 ]
Png, Ching Eng [1 ]
Ooi, Zi-En [3 ]
Teng, Jing Hua [3 ]
Wong, Liang Jie [4 ]
Chong, Yidong [2 ]
Wu, Lin [1 ,5 ]
机构
[1] ASTAR, Inst High Performance Comp IHPC, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[3] ASTAR, Inst Mat Res & Engn IMRE, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[5] Singapore Univ Technol & Design SUTD, Sci Math & Technol SMT, 8 Somapah Rd, Singapore 487372, Singapore
基金
新加坡国家研究基金会;
关键词
2D materials; hot electrons; near-field excitation; Smith-Purcell; Terahertz (THz) radiation; INFRARED-EMISSION; ELECTRON-MOBILITY; FERMI VELOCITY; GRAPHENE; LIGHT; GENERATION; PLASMON; FIELD; AMPLIFICATION;
D O I
10.1002/lpor.202300002
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Terahertz (THz) radiation has broad applications ranging from medical imaging to spectroscopy. One viable source of high-intensity THz radiation is the Smith-Purcell (SP) effect, which involves charge carriers moving over a periodic surface. Conventional SP emitters use electron beams to generate charge carriers, necessitating bulky electron acceleration stages. Here, a compact design for generating THz SP radiation using mobile charge carriers within 2D materials is proposed. This circumvents the beam alignment and beam divergence challenge, allowing for a reduction in the electron-grating separation from tens of nm to 5 nm or less, leading to more efficient near-field excitation and a potentially chip-level THz source. In such a configuration, it is shown that the optimal electron velocity and the corresponding maximum radiation intensity can be predicted from the electron-grating separation. The numerical demonstration shows that hot electrons can excite SP radiation in graphene on a silicon grating, and the radiation intensity can be increased by graphene surface plasmons. This study can be extended to a broad variety of charge carriers in 2D materials, thus allowing for compact, tunable, and low-cost THz sources.
引用
收藏
页数:12
相关论文
共 102 条
[1]   OBSERVATION OF 2-DIMENSIONAL PLASMON IN SILICON INVERSION LAYERS [J].
ALLEN, SJ ;
TSUI, DC ;
LOGAN, RA .
PHYSICAL REVIEW LETTERS, 1977, 38 (17) :980-983
[2]   Superradiant emission of Smith-Purcell radiation [J].
Andrews, HL ;
Boulware, CH ;
Brau, CA ;
Jarvis, JD .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2005, 8 (11)
[3]  
[Anonymous], AN OPT GRAPH SURF CO
[4]  
ansys, FDTD LUM
[5]   Coherent Cherenkov radiation as an intense THz source [J].
Bleko, V. ;
Karataev, P. ;
Konkov, A. ;
Kruchinin, K. ;
Naumenko, G. ;
Potylitsyn, A. ;
Vaughan, T. .
XI INTERNATIONAL SYMPOSIUM ON RADIATION FROM RELATIVISTIC ELECTRONS IN PERIODIC STRUCTURES (RREPS2015), 2016, 732
[6]   Observation of Carrier-Density-Dependent Many-Body Effects in Graphene via Tunneling Spectroscopy [J].
Brar, Victor W. ;
Wickenburg, Sebastian ;
Panlasigui, Melissa ;
Park, Cheol-Hwan ;
Wehling, Tim O. ;
Zhang, Yuanbo ;
Decker, Regis ;
Girit, Caglar ;
Balatsky, Alexander V. ;
Louie, Steven G. ;
Zettl, Alex ;
Crommie, Michael F. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[7]  
Broholm C., 2016, BAS RES NEEDS WORKSH
[8]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[9]   Spontaneous Smith-Purcell radiation described through induced surface currents [J].
Brownell, JH ;
Walsh, J ;
Doucas, G .
PHYSICAL REVIEW E, 1998, 57 (01) :1075-1080
[10]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926