Exploration of magnetic characteristics in perovskite LaCoO3 by particle swarm optimization combined with Monte Carlo method

被引:21
作者
Li, Bo-chen [1 ]
Lv, Dan [2 ]
Wang, Wei [1 ]
Li, Hui-yi [2 ]
机构
[1] Shenyang Univ Technol, Sch Sci, Shenyang 110870, Peoples R China
[2] Shenyang Univ Technol, Sch Environm & Chem Engn, Shenyang 110870, Peoples R China
关键词
Perovskite LaCoO 3; Particle swarm optimization; Monte Carlo method; Ising model; Magnetization; Hysteresis loop; EXCHANGE COUPLINGS CALCULATION; PHASE-DIAGRAMS; TEMPERATURE; TRANSITION; TRANSPORT;
D O I
10.1016/j.physleta.2023.128697
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the new method combined with Monte Carlo simulation and particle swarm optimization is presented to explore the magnetic characteristics of perovskite LaCoO3 described by Ising model. We use the particle swarm optimization to obtain the appropriate physical parameters, such as Jab, Jaa and further adopt the Monte Carlo simulation to calculate the magnetization M, the magnetic susceptibility chi, the entropy S, the internal energy U of system under the influence of the anisotropy D and magnetic field h. The phase diagrams and the hysteresis loops are given. These results are also compared with the relevant theoretical and experimental results.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Accurate Surge Arrester Modeling for Optimal Risk-Aware Lightning Protection Utilizing a Hybrid Monte Carlo-Particle Swarm Optimization Algorithm [J].
Asadi, Amir Hossein Kimiai ;
Eskandari, Mohsen ;
Delavari, Hadi .
TECHNOLOGIES, 2024, 12 (06)
[32]   Magnetic Properties of Mn3ZnN Anti-perovskite Nanoparticles: A Monte Carlo Simulations [J].
R. Masrour ;
A. Jabar ;
L. Bahmad ;
E. K. Hlil ;
M. Hamedoun ;
A. Benyoussef ;
A. Hourmatallah ;
N. Benzakour ;
A. Rezzouk ;
K. Bouslykhane .
Journal of Cluster Science, 2021, 32 :163-166
[33]   Exploration of Desirability Function Analysis-Based Particle Swarm Optimization for Magnetic Abrasive Finishing of Mild Steel [J].
Singh, Rajneesh Kumar ;
Gangwar, Swati ;
Singh, D. K. .
JOURNAL OF ADVANCED MANUFACTURING SYSTEMS, 2020, 19 (04) :607-627
[34]   Magnetic Properties of the Quadruple Perovskite Oxide CaCu3Fe2Re2O12: Monte Carlo Study [J].
Arejdal, M. ;
Jabar, A. ;
Bahmad, L. ;
Benyoussef, A. .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 101 :329-340
[35]   Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation [J].
Buyukada, Musa .
BIORESOURCE TECHNOLOGY, 2016, 216 :280-286
[36]   Magnetic, magnetocaloric and thermoelectric investigations of perovskite LaFeO3 compound: First principles and Monte Carlo calculations [J].
Tahiri, N. ;
Dahbi, S. ;
Dani, I ;
El Bounagui, O. ;
Ez-Zahraouy, H. .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2021, 1204
[37]   In UOWC systems: A combined PAPR reduction method by PTS approach based on improved particle swarm optimization [J].
Bai, Jurong ;
Yang, Shuo .
OPTIK, 2021, 232
[38]   Applying finite element method combined with particle swarm optimization to optimize shield wires for transmission line [J].
Jiang, Z. (939814876@qq.com), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (09) :8191-8198
[39]   A 3D Dubins Curve Constructing Method Based on Particle Swarm Optimization [J].
Ji, Cheng ;
Wang, Chu ;
Song, Mingyan ;
Wang, Fengmin .
PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT 2021, 2022, 13148 :150-160
[40]   PARTICLE SWARM OPTIMIZATION OF WIND FARM DUE TO NON-GREENHOUSE GAS EMISSION UNDER POWER MARKET CONSIDERING UNCERTAINTY OF WIND SPEED USING MONTE CARLO METHOD [J].
Mohammadi, Mohammad ;
Nasiraghdam, Hossein .
TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2015, 22 (01) :79-85