MOCPSO: A multi-objective cooperative particle swarm optimization algorithm with dual search strategies☆

被引:17
作者
Zhang, Yan [1 ,2 ]
Li, Bingdong [1 ,2 ]
Hong, Wenjing [3 ]
Zhou, Aimin [1 ,2 ]
机构
[1] East China Normal Univ, Lab Artificial Intelligence Educ, 3663 Zhongshan North Rd, Shanghai 200062, Peoples R China
[2] East China Normal Univ, Sch Comp Sci & Technol, 3663 Zhongshan North Rd, Shanghai 200062, Peoples R China
[3] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Evolutionary algorithm; Meta-heuristics; Large-scale multi-objective optimization; Particle swarm optimization; OFFSPRING GENERATION; MULTIPLE POPULATIONS; MODEL;
D O I
10.1016/j.neucom.2023.126892
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimization (PSO) is a widely embraced meta-heuristic approach to tackling the complexities of multi-objective optimization problems (MOPs), renowned for its simplicity and swift convergence. However, when faced with large-scale multi-objective optimization problems (LSMOPs), most PSOs suffer from limited local search capabilities and insufficient randomness. This can result in suboptimal results, particularly in high dimensional spaces. To address these issues, this paper introduces MOCPSO, a Multi-Objective Cooperative Particle Swarm Optimization Algorithm with Dual Search Strategies. MOCPSO incorporates a diversity search strategy (DSS) to augment perturbation and enhance the local search scope of particles, alongside a more convergent search strategy (CSS) to expedite particle convergence. Moreover, MOCPSO utilizes a three category framework to effectively leverage the benefits of both DSS and CSS. Experimental results on benchmark LSMOPs with 500, 1000, and 2000 decision variables demonstrate that MOCPSO outperforms existing state-of-the-art large-scale multi-objective evolutionary algorithms on most test instances.
引用
收藏
页数:13
相关论文
共 62 条
[11]  
Deb K., 1996, COMPUTER SCI INFORMA, V26, P30, DOI DOI 10.1007/978-3-662-03423-127
[12]  
Eberhart R., 1995, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, P39, DOI DOI 10.1109/MHS.1995.494215
[13]   IM-MOEA/D: An Inverse Modeling Multi-Objective Evolutionary Algorithm Based on Decomposition [J].
Farias, Lucas R. C. ;
Araujo, Aluizio F. R. .
2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, :462-467
[14]   Multiobjective optimization in bioinformatics and computational biology [J].
Handl, Julia ;
Kell, Douglas B. ;
Knowles, Joshua .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2007, 4 (02) :279-292
[15]   Adaptive Offspring Generation for Evolutionary Large-Scale Multiobjective Optimization [J].
He, Cheng ;
Cheng, Ran ;
Yazdani, Danial .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (02) :786-798
[16]  
Hollander M., 2013, Nonparametric Statistical Methods
[17]   Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses [J].
Hong, Wen-Jing ;
Yang, Peng ;
Tang, Ke .
INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2021, 18 (02) :155-169
[18]   Adaptive Multiobjective Particle Swarm Optimization Based on Parallel Cell Coordinate System [J].
Hu, Wang ;
Yen, Gary G. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (01) :1-18
[19]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[20]   Many-objective groundwater monitoring network design using bias-aware ensemble Kalman filtering, evolutionary optimization, and visual analytics [J].
Kollat, J. B. ;
Reed, P. M. ;
Maxwell, R. M. .
WATER RESOURCES RESEARCH, 2011, 47