MOCPSO: A multi-objective cooperative particle swarm optimization algorithm with dual search strategies☆

被引:17
作者
Zhang, Yan [1 ,2 ]
Li, Bingdong [1 ,2 ]
Hong, Wenjing [3 ]
Zhou, Aimin [1 ,2 ]
机构
[1] East China Normal Univ, Lab Artificial Intelligence Educ, 3663 Zhongshan North Rd, Shanghai 200062, Peoples R China
[2] East China Normal Univ, Sch Comp Sci & Technol, 3663 Zhongshan North Rd, Shanghai 200062, Peoples R China
[3] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Evolutionary algorithm; Meta-heuristics; Large-scale multi-objective optimization; Particle swarm optimization; OFFSPRING GENERATION; MULTIPLE POPULATIONS; MODEL;
D O I
10.1016/j.neucom.2023.126892
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimization (PSO) is a widely embraced meta-heuristic approach to tackling the complexities of multi-objective optimization problems (MOPs), renowned for its simplicity and swift convergence. However, when faced with large-scale multi-objective optimization problems (LSMOPs), most PSOs suffer from limited local search capabilities and insufficient randomness. This can result in suboptimal results, particularly in high dimensional spaces. To address these issues, this paper introduces MOCPSO, a Multi-Objective Cooperative Particle Swarm Optimization Algorithm with Dual Search Strategies. MOCPSO incorporates a diversity search strategy (DSS) to augment perturbation and enhance the local search scope of particles, alongside a more convergent search strategy (CSS) to expedite particle convergence. Moreover, MOCPSO utilizes a three category framework to effectively leverage the benefits of both DSS and CSS. Experimental results on benchmark LSMOPs with 500, 1000, and 2000 decision variables demonstrate that MOCPSO outperforms existing state-of-the-art large-scale multi-objective evolutionary algorithms on most test instances.
引用
收藏
页数:13
相关论文
共 62 条
[1]   A scalable parallel cooperative coevolutionary PSO algorithm for multi-objective optimization [J].
Atashpendar, Arash ;
Dorronsoro, Bernabe ;
Danoy, Gregoire ;
Bouvry, Pascal .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2018, 112 :111-125
[2]   HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization [J].
Bader, Johannes ;
Zitzler, Eckart .
EVOLUTIONARY COMPUTATION, 2011, 19 (01) :45-76
[3]   Applying graph-based differential grouping for multiobjective large-scale optimization [J].
Cao, Bin ;
Zhao, Jianwei ;
Gu, Yu ;
Ling, Yingbiao ;
Ma, Xiaoliang .
SWARM AND EVOLUTIONARY COMPUTATION, 2020, 53 (53)
[4]   Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations [J].
Chen, Huangke ;
Cheng, Ran ;
Wen, Jinming ;
Li, Haifeng ;
Weng, Jian .
INFORMATION SCIENCES, 2020, 509 :457-469
[5]   Test Problems for Large-Scale Multiobjective and Many-Objective Optimization [J].
Cheng, Ran ;
Jin, Yaochu ;
Olhofer, Markus ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) :4108-4121
[6]   A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization [J].
Cheng, Ran ;
Jin, Yaochu ;
Olhofer, Markus ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (05) :773-791
[7]   A Competitive Swarm Optimizer for Large Scale Optimization [J].
Cheng, Ran ;
Jin, Yaochu .
IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (02) :191-204
[8]  
Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388
[9]   A new multi-objective particle swarm optimization algorithm based on decomposition [J].
Dai, Cai ;
Wang, Yuping ;
Ye, Miao .
INFORMATION SCIENCES, 2015, 325 :541-557
[10]  
Deb K., 2000, Parallel Problem Solving from Nature PPSN VI. 6th International Conference. Proceedings (Lecture Notes in Computer Science Vol.1917), P849